
1

UNIT-3

Topics to be covered:
• Basic Parsing Techniques: Parsers, Shift

reduce parsing, operator precedence
parsing, top down parsing, predictive
parsers ,Automatic Construction of efficient
Parsers: LR parsers, the canonical
Collection of LR(0) items, constructing
SLR,CLR & LALR parsing tables, using
ambiguous grammars, an automatic parser
generator, implementation of LR parsing
tables. 2

3

Shift-Reduce Parsers

• Reviewing some technologies:
– Phrase
– Simple phrase
– Handle of a sentential form

S

A b C

 b C a C

 b C b a C

A sentential form

handle Simple phrase

4

Shift-reduce parser

• A parse stack
– Initially empty, contains symbols already parsed

• Elements in the stack are not terminal or nonterminal symbols

– The parse stack catenated with the remaining input
always represents a right sentential form

– Tokens are shifted onto the stack until the top of the
stack contains the handle of the sentential form

5

Shift-reduce parser

• Two questions
1. Have we reached the end of handles and how

long is the handle?
2. Which nonterminal does the handle reduce to?

• We use tables to answer the questions
– ACTION table
– GOTO table

6

Shift-reduce parser

• LR parsers are driven by two tables:
– Action table, which specifies the actions to take

• Shift, reduce, accept or error

– Goto table, which specifies state transition
• We push states, rather than symbols onto the

stack
• Each state represents the possible subtree of the

parse tree

7

Shift-reduce parser

8

9

10

<program>

begin <stmts> end $

SimpleStmt ; <stmts>

SimpleStmt ; <stmts>



R 4

R 2

R 2

11

LR Parsers
• LR(1):

– left-to-right scanning
– rightmost derivation(reverse)
– 1-token lookahead

• LR parsers are deterministic
– no backup or retry parsing actions

• LR(k) parsers
– decide the next action by examining the tokens

already shifted and at most k lookahead tokens
– the most powerful of deterministic bottom-up

parsers with at most k lookahead tokens.

12

LR(0) Parsing

• A production has the form
– AX1X2…Xj

• By adding a dot, we get a configuration (or an
item)
– A•X1X2…Xj
– AX1X2…Xi • Xi+1 … Xj
– AX1X2…Xj •

• The • indicates how much of a RHS has been
shifted into the stack.

13

LR(0) Parsing

• An item with the • at the end of the RHS
– AX1X2…Xj •
– indicates (or recognized) that RHS should be

reduced to LHS
• An item with the • at the beginning of RHS

– A•X1X2…Xj

– predicts that RHS will be shifted into the stack

14

LR(0) Parsing
• An LR(0) state is a set of configurations

– This means that the actual state of LR(0)
parsers is denoted by one of the items.

• The closure0 operation:
– if there is an configuration B • A  in the set

then add all configurations of the form A • 
to the set.

• The initial configuration
– s0 = closure0({S •  $})

15

LR(0) Parsing

16

17

LR(0) Parsing
• Given a configuration set s, we can compute its

successor, s', under a symbol X
– Denoted go_to0(s,X)=s'

18

LR(0) Parsing
• Characteristic finite state machine (CFSM)

– It is a finite automaton, p.148, para. 2.
– Identifying configuration sets and successor operation with CFSM

states and transitions

19

LR(0) Parsing
• For example, given grammar G2

S'S$
SID|

20

LR(0) Parsing
• CFSM is the goto table of LR(0) parsers.

21

22

LR(0) Parsing
• Because LR(0) uses no lookahead, we must

extract the action function directly from the
configuration sets of CFSM

• Let Q={Shift, Reduce1, Reduce2 , …, Reducen}
– There are n productions in the CFG

• S0 be the set of CFSM states
– P:S02Q

• P(s)={Reducei | B •  s and production i is
B }  (if A • a  s for a Vt Then
{Shift} Else )

23

LR(0) Parsing
• G is LR(0) if and only if  s  S0 |P(s)|=1
• If G is LR(0), the action table is trivially extracted

from P
– P(s)={Shift}  action[s]=Shift
– P(s)={Reducej}, where production j is the augmenting

production,  action[s]=Accept
– P(s)={Reducei}, ij, action[s]=Reducei

– P(s)=  action[s]=Error

24

• Consider G1
SE$
EE+T | T
TID|(E)

CFSM for G1 

25

LR(0) Parsing

• Any state s  S0 for which |P(s)|>1 is said to be
inadequate

• Two kinds of parser conflicts create inadequacies
in configuration sets
– Shift-reduce conflicts
– Reduce-reduce conflicts

26

LR(0) Parsing
• It is easy to introduce inadequacies in

CFSM states
– Hence, few real grammars are LR(0). For

example,
• Consider -productions

– The only possible configuration involving a -production
is of the form A •

– However, if A can generate any terminal string other than
, then a shift action must also be possible (First(A))

• LR(0) parser will have problems in handling
operator precedence properly

27

LR(1) Parsing
• An LR(1) configuration, or item is of the

form
– AX1X2…Xi • Xi+1 … Xj, l where l  Vt{}

• The look ahead commponent l represents a possible
lookahead after the entire right-hand side has been
matched

• The  appears as lookahead only for the augmenting
production because there is no lookahead after the
endmarker

28

LR(1) Parsing
• We use the following notation to represent

the set of LR(1) configurations that shared
the same dotted production

AX1X2…Xi • Xi+1 … Xj, {l1…lm}
={AX1X2…Xi • Xi+1 … Xj, l1} 
{AX1X2…Xi • Xi+1 … Xj, l2} 

…
{AX1X2…Xi • Xi+1 … Xj, lm}

29

LR(1) Parsing

• There are many more distinct LR(1)
configurations than LR(0) configurations.

• In fact, the major difficulty with LR(1)
parsers is not their power but rather finding
ways to represent them in storage-efficient
ways.

30

LR(1) Parsing
• Parsing begins with the configuration

– closure1({S •  $, {}})

31

LR(1) Parsing
• Consider G1

SE$
EE+T | T
TID|(E)

• closure1(S • E$, {})

S • E$, {}

E • E+T, {$}

E • T, {$}

E • E+T, {+}

E • T, {+}

T • ID, {+}

T • (E), {+}
T • ID, {$}

T • (E), {$}

closure1(S • E$, {})=
{
S • E$, {};
E • E+T, {$+}
E • T, {$+}
T • ID, {$+}
T • (E), {$+}
}

How many
configures?

32

LR(1) Parsing
• Given an LR(1) configuration set s, we

compute its successor, s', under a symbol X
– go_to1(s,X)

33

LR(1) Parsing

• We can build a finite automation that is
analogue of the LR(0) CFSM
– LR(1) FSM, LR(1) machine

• The relationship between CFSM and LR(1)
macine
– By merging LR(1) machine’s configuration sets,

we can obtain CFSM

34

35

• G3

SE$
EE+T|T
TT*P|P
PID|(E)

Is G3 an LR(0)
Grammar?

36

37

LR(1) Parsing
• The go_to table used to drive an LR(1) is

extracted directly from the LR(1) machine

38

LR(1) Parsing
• Action table is extracted directly from the

configuration sets of the LR(1) machine
• A projection function, P

– P : S1Vt2Q

• S1 be the set of LR(1) machine states

• P(s,a)={Reducei | B •,a s and
production i is B }  (if A•
a,b  s Then {Shift} Else )

39

LR(1) Parsing
• G is LR(1) if and only if

– s S1 a Vt |P(s,a)|1

• If G is LR(1), the action table is trivially extracted
from P
– P(s,$)={Shift}  action[s][$]=Accept
– P(s,a)={Shift}, a$  action[s][a]=Shift
– P(s,a)={Reducei},  action[s][a]=Reducei

– P(s,a)=  action[s][a]=Error

40

41

SLR(1) Parsing

• LR(1) parsers are the most powerful class of
shift-reduce parsers, using a single
lookahead
– LR(1) grammars exist for virtually all

programming languages
– LR(1)’s problem is that the LR(1) machine

contains so many states that the go_to and
action tables become prohibitively large

42

SLR(1) Parsing

• In reaction to the space inefficiency of LR(1)
tables, computer scientists have devised parsing
techniques that are almost as powerful as LR(1)
but that require far smaller tables
1. One is to start with the CFSM, and then add

lookahead after the CFSM is build
– SLR(1)

2. The other approach to reducing LR(1)’s space
inefficiencies is to merger inessential LR(1) states
– LALR(1)

43

SLR(1) Parsing

• SLR(1) stands for Simple LR(1)
– One-symbol lookahead
– Lookaheads are not built directly into

configurations but rather are added after the
LR(0) configuration sets are built

– An SLR(1) parser will perform a reduce action
for configuration B  • if the lookahead
symbol is in the set Follow(B)

44

SLR(1) Parsing

• The SLR(1) projection function, from
CFSM states,
– P : S0Vt2Q

– P(s,a)={Reducei | B •,a Follow(B) and
production i is B }  (if A • a  s
for a Vt Then {Shift} Else )

45

SLR(1) Parsing
• G is SLR(1) if and only if

– s S0 a Vt |P(s,a)|1

• If G is SLR(1), the action table is trivially
extracted from P
– P(s,$)={Shift}  action[s][$]=Accept
– P(s,a)={Shift}, a$  action[s][a]=Shift
– P(s,a)={Reducei},  action[s][a]=Reducei

– P(s,a)=  action[s][a]=Error
• Clearly SLR(1) is a proper superset of LR(0)

46

SLR(1) Parsing
• Consider G3

– It is LR(1) but not
LR(0)

– See states 7,11
– Follow(E)={$,+,)}

SE$
EE+T|T
TT*P|P
PID|(E)

47

SE$
EE+T|T
TT*P|P
PID|(E)

G3 is both SLR(1) and LR(1).

48

Limitations of the SLR(1) Technique
• The use of Follow sets to estimate the

lookaheads that predict reduce actions is
less precise than using the exact lookaheads
incorporated into LR(1) configurations
– Consider G4

Elem(List, Elem)
ElemScalar
ListList,Elem
List Elem
Scalar ID
Scalar(Scalar)

Fellow(Elem)={“)”,”,”,….}

49

Fellow(Elem)={“)”,”,”,….}

LR(1) lookahead for
ElemScalar • is “,”

50

LALR(1)

• LALR(1) parsers can be built by first
constructing an LR(1) parser and then
merging states
– An LALR(1) parser is an LR(1) parser in which

all states that differ only in the lookahead
components of the configurations are merged

– LALR is an acronym for Look Ahead LR

51

The core of a configuration

• The core of the above two configurations is the
same

EE+T
T  T*P
T P
P id
P (E)

52

States Merge
• Cognate(s)={c|cs, core(s)=s}

EE+T
T  T*P
T P
P id
P (E)

s

Cognate() =

53

LALR(1)
• LALR(1) machine

54

LALR(1)
• The CFSM state is transformed into its

LALR(1) Cognate
– P : S0Vt2Q

– P(s,a)={Reducei | B •,a Cognate(s) and
production i is B }  (if A • a  s
Then {Shift} Else )

55

LALR(1) Parsing
• G is LALR(1) if and only if

– s S0 a Vt |P(s,a)|1

• If G is LALR(1), the action table is trivially
extracted from P
– P(s,$)={Shift}  action[s][$]=Accept
– P(s,a)={Shift}, a$  action[s][a]=Shift
– P(s,a)={Reducei},  action[s][a]=Reducei

– P(s,a)=  action[s][a]=Error

56

LALR(1) Parsing
• Consider G5

<stmt>ID
<stmt><var>:=<expr>
<var> ID
<var> ID [<expr>]
<expr><var>

• Assume statements are separated by ;’s, the
grammar is not SLR(1) because
;  Follow(<stmt>) and
;  Follow(<var>), since <expr><var>

57

LALR(1) Parsing

• However, in LALR(1), if we use <var> 
ID the next symbol must be :=
so action[1, :=] = reduce(<var>  ID)
action[1, ;] = reduce(<stmt>  ID)
action[1,[] = shift

• There is no conflict.

58

LALR(1) Parsing
• A common technique to put an LALR(1) grammar

into SLR(1) form is to introduce a new
nonterminal whose global (i.e. SLR) lookaheads
more nearly correspond to LALR’s exact look
aheads
– Follow(<lhs>) = {:=}

<stmt>ID
<stmt><var>:=<expr>
<var> ID
<var> ID [<expr>]
<expr><var>

<stmt>ID
<stmt><lhs>:=<expr>
<lhs> ID
<lhs> ID [expr>]
<var> ID
<var> ID [expr>]
<expr><var>

59

LALR(1) Parsing
• At times, it is the CFSM itself that is at fault.

S(Exp1)
S[Exp1]
S(Exp2]
S[Exp2)
<Exp1>ID
<Exp2>ID

• A different expression nonterminal is used to allow error or
warning diagnostics

60

Building LALR(1) Parsers

• In the definition of LALR(1)
– An LR(1) machine is first built, and then its

states are merged to form an automaton
identical in structure to the CFSM

• May be quite inefficient
– An alternative is to build the CFSM first.

• Then LALR(1) lookaheads are “propagated” from
configuration to configuration

61

Building LALR(1) Parsers

• Propagate links:
– Case 1: one configuration is created from

another in a previous state via a shift operation

A •X , L1 A X•  , L2

62

Building LALR(1) Parsers

• Propagate links:
– Case 2: one configuration is created as the

result of a closure or prediction operation on
another configuration

B •A , L1

A • , L2

L2={ x|xFirst(t) and t L1 }

63

Building LALR(1) Parsers
• Step 1: After the CFSM is built, we can create all

the necessary propagate links to transmit
lookaheads from one configuration to another

• Step 2: spontaneous lookaheads are determined
– By including in L2, for configuration A,L2, all

spontaneous lookaheads induced by configurations of
the form B    A,L1

• These are simply the non- values of First()

• Step 3: Then, propagate lookaheads via the
propagate links
– See figure 6.25

64

Building LALR(1) Parsers

65

66

67

Building LALR(1) Parsers
• A number of LALR(1) parser generators use

lookahead propagation to compute the parser
action table
– LALRGen uses the propagation algorithm
– YACC examines each state repeatedly

• An intriguing alternative to propagating LALR
lookaheads is to compute them as needed by doing
a backward search through the CFSM
– Read it yourself. P. 176, Para. 3

68

Building LALR(1) Parsers

• An intriguing alternative
to propagating LALR
lookaheads is to compute
them as needed by doing a
backward search through
the CFSM
– Read it yourself. P. 176,

Para. 3

69

Calling Semantic Routines in
Shift-Reduce Parsers

• Shift-reduce parsers can normally handle larger
classes of grammars than LL(1) parsers, which is a
major reason for their popularity

• Shift-reduce parsers are not predictive, so we
cannot always be sure what production is being
recognized until its entire right-hand side has been
matched
– The semantic routines can be invoked only after a

production is recognized and reduced
• Action symbols only at the extreme right end of a right-hand

side

70

Calling Semantic Routines in
Shift-Reduce Parsers

• Two common tricks are known that allow more flexible
placement of semantic routine calls

• For example,
<stmt>if <expr> then <stmts> else <stmts> end if

• We need to call semantic routines after the conditional
expression else and end if are matched
– Solution: create new nonterminals that generate 

<stmt>if <expr> <test cond>
then <stmts> <process then part>
else <stmts> end if

<test cond>
<process than part>

71

Calling Semantic Routines in
Shift-Reduce Parsers

• If the right-hand sides differ in the semantic routines that
are to be called, the parser will be unable to correctly
determine which routines to invoke
– Ambiguity will manifest. For example,

<stmt>if <expr> <test cond1>
then <stmts> <process then part>
else <stmts> end if;

<stmt>if <expr> <test cond2>
then <stmts> <process then part>
end if;

<test cond1>
<test cond2>
<process than part>

72

Calling Semantic Routines in
Shift-Reduce Parsers

• An alternative to the use of –generating
nonterminals is to break a production into a
number of pieces, with the breaks placed where
semantic routines are required

<stmt><if head><then part><else part>
<if head>if <expr>
<then part>then <stmts>
<else part>then <stmts> end if;

– This approach can make productions harder to read but
has the advantage that no –generating are needed

73

Uses (and Misuses) of Controlled
Ambiguity

• Research has shown that ambiguity, if
controlled, can be of value in producing
efficient parsers for real programming
languages.

• The following grammar is not LR(1)
Stmt if Expr then Stmt
Stmt if Expr then Stmt else Stmt

74

Uses (and Misuses) of Controlled
Ambiguity

• The following grammar is not ambiguous
<stmt><matched>|<unmatched>
<matched> if <logic_expr> then <matched> else <matched>

| <any_non-if_statement>
<unmatched> if <logic_expr> then <stmt>

| if <logic_expr> then <matched> else <unmatched>

75

Uses (and Misuses) of Controlled
Ambiguity

• In LALRGen, when conflicts occur, we may use
the option resolve to give preference to earlier
productions.

• In YACC, conflicts are solved in
– 1. shift is preferred to reduce;
– 2. earlier productions are preferred.

• Grammars with conflicts are usually smaller.
• Application: operator precedence and

associativity.

76

Uses (and Misuses) of Controlled
Ambiguity

• We no longer specify a parser purely in
terms of the grammar it parses, but rather
we explicitly include auxiliary rules to
disambiguate conflicts in the grammar.
– We will present how to specify auxiliary rules

in yacc when we introduce the yacc.

77

Uses (and Misuses) of Controlled
Ambiguity

• The precedence values assigned to operators
resolve most shift-reduce conflicts of the form
Expr Expr OP1 Expr
Expr Expr OP2 Expr

• Rules:
– If Op1 has a higher precedence than Op2, we Reduce.
– If Op2 has a higher precedence, we shift.
– If Op1 and Op2 have the same precedence, we use the

associativity definitions.
• Right-associative, we shift. Left-associative, we reduce.
• No-associative, we signal, and error.

78

EE+E
EE*E
EID

EE+E
EE*E

EID

EE+E
EE+E
EE*E
EID

EE*E
EE+E
EE*E
EID

EE+E
EE+E
EE*E

EE*E
EE+E
EE*E

EID

EID

ID

E

E

E

+

*

ID

ID

79

Uses (and Misuses) of Controlled
Ambiguity (Cont’d)

• More example: Page 234 of “lex&yacc”

%nonassoc LOWER_THAN_ELSE
%nonassoc ELSE
%%

stmt: IF expr stmt %prec LOWER_THAN_ELSE
| IF expr stmt ELSE stmt;

80

Uses (and Misuses) of Controlled
Ambiguity (Cont’d)

• If your language uses a THEN keyword (like Pascal does):

%nonassoc THAN
%nonassoc ELSE
%%

stmt: IF expr THAN stmt
| IF expr THAN stmt ELSE stmt
;

81

Optimizing Parse Tables

• A number of improvements can be made to
decrease the space needs of an LR parse
– Merging go_to and action tables to a single

table

82

83

84

Optimizing Parse Tables

• Encoding parse table
– As integers

• Error entries as zeros
• Reduce actions as positive integers
• Shift actions as negative integers

• Single reduce states
– E.g. state 4 in Figure 6.35

• State 5 can be eliminated

85

Optimizing Parse Tables

• See figure 6.36

