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UNIT-3



Topics to be covered:
• Basic Parsing Techniques: Parsers, Shift 

reduce parsing, operator  precedence 
parsing, top down parsing, predictive 
parsers ,Automatic Construction of efficient 
Parsers: LR parsers, the canonical 
Collection of LR(0) items, constructing 
SLR,CLR & LALR parsing tables, using 
ambiguous grammars, an automatic parser 
generator, implementation of LR parsing 
tables. 2
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Shift-Reduce Parsers

• Reviewing some technologies:
– Phrase
– Simple phrase
– Handle of a sentential form

S

A b C

 b C a C

 b C b a C

A sentential form

handle Simple phrase
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Shift-reduce parser

• A parse stack
– Initially empty, contains symbols already parsed

• Elements in the stack are not terminal or nonterminal symbols

– The parse stack catenated with the remaining input 
always represents a  right sentential form

– Tokens are shifted onto the stack until the top of the 
stack contains the handle of the sentential form
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Shift-reduce parser

• Two questions
1. Have we reached the end of handles and how 

long is the handle?
2. Which nonterminal does the handle  reduce to?

• We use tables to answer the questions
– ACTION table
– GOTO table
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Shift-reduce parser

• LR parsers are driven by two tables:
– Action table, which specifies the actions to take

• Shift, reduce, accept or error

– Goto table, which specifies state transition
• We push states, rather than symbols onto the 

stack
• Each state represents the possible subtree of the 

parse tree
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Shift-reduce parser
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<program>

begin <stmts> end $

SimpleStmt ; <stmts>

SimpleStmt ; <stmts>



R 4

R 2

R 2
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LR Parsers
• LR(1):  

– left-to-right scanning
– rightmost derivation(reverse)
– 1-token lookahead

• LR parsers are deterministic
– no backup or retry parsing actions

• LR(k) parsers 
– decide the next action by examining the tokens 

already shifted and at most k lookahead tokens
– the most powerful of deterministic bottom-up 

parsers with at most k lookahead tokens.
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LR(0) Parsing

• A production has the form 
– AX1X2…Xj

• By adding a dot, we get a configuration (or an 
item)
– A•X1X2…Xj
– AX1X2…Xi • Xi+1 … Xj
– AX1X2…Xj •

• The • indicates how much of a RHS has been 
shifted into the stack.
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LR(0) Parsing

• An item with the • at the end of the RHS
– AX1X2…Xj •
– indicates (or recognized) that RHS  should be 

reduced to LHS
• An item with the • at the beginning of RHS

– A•X1X2…Xj

– predicts that RHS will be shifted into the stack



14

LR(0) Parsing
• An LR(0) state is a set of configurations

– This means that the actual state of LR(0) 
parsers is denoted by one of the items.

• The closure0 operation:
– if there is an configuration B • A  in the set 

then add all configurations of the form A • 
to the set.

• The initial configuration
– s0 = closure0({S •  $})
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LR(0) Parsing
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LR(0) Parsing
• Given a configuration set s, we can compute its 

successor, s', under a symbol X
– Denoted go_to0(s,X)=s'
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LR(0) Parsing
• Characteristic finite state machine (CFSM)

– It is a finite automaton, p.148, para. 2.
– Identifying configuration sets and successor operation with CFSM 

states and transitions
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LR(0) Parsing
• For example, given grammar G2

S'S$
SID|
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LR(0) Parsing
• CFSM is the goto table of LR(0) parsers.
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LR(0) Parsing
• Because LR(0) uses no lookahead, we must 

extract the action function directly from the 
configuration sets of CFSM

• Let Q={Shift, Reduce1, Reduce2 , …, Reducen}
– There are n productions in the CFG

• S0 be the set of CFSM states
– P:S02Q

• P(s)={Reducei | B •  s and production i is 
B }  (if A • a  s for a Vt Then 
{Shift} Else )
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LR(0) Parsing
• G is LR(0) if and only if  s  S0 |P(s)|=1
• If G is LR(0), the action table is trivially extracted 

from P
– P(s)={Shift}  action[s]=Shift
– P(s)={Reducej}, where production j is the augmenting 

production,  action[s]=Accept
– P(s)={Reducei}, ij, action[s]=Reducei

– P(s)=  action[s]=Error
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• Consider  G1
SE$
EE+T | T
TID|(E)

CFSM for G1 
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LR(0) Parsing

• Any state s  S0 for which |P(s)|>1 is said to be 
inadequate

• Two kinds of parser conflicts create inadequacies 
in configuration sets
– Shift-reduce conflicts
– Reduce-reduce conflicts
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LR(0) Parsing
• It is easy to introduce inadequacies in 

CFSM states
– Hence, few real grammars are LR(0). For 

example,
• Consider -productions

– The only possible configuration involving a -production 
is of the form A •

– However, if A can generate any terminal string other than 
, then a shift action must also be possible (First(A))

• LR(0) parser will have problems in handling 
operator precedence properly
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LR(1) Parsing
• An LR(1) configuration, or item is of the 

form
– AX1X2…Xi • Xi+1 … Xj, l where l  Vt{}

• The look ahead commponent l represents a possible 
lookahead after the entire right-hand side has been 
matched

• The  appears as lookahead only for the augmenting 
production because there is no lookahead after the 
endmarker
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LR(1) Parsing
• We use the following notation to represent 

the set of LR(1) configurations that shared 
the same dotted production

AX1X2…Xi • Xi+1 … Xj, {l1…lm}
={AX1X2…Xi • Xi+1 … Xj, l1} 
{AX1X2…Xi • Xi+1 … Xj, l2} 

…
{AX1X2…Xi • Xi+1 … Xj, lm}



29

LR(1) Parsing

• There are many more distinct LR(1) 
configurations than LR(0) configurations.

• In fact, the major difficulty with LR(1) 
parsers is not their power but rather finding 
ways to represent them in storage-efficient 
ways.



30

LR(1) Parsing
• Parsing begins with the configuration 

– closure1({S •  $, {}})
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LR(1) Parsing
• Consider  G1

SE$
EE+T | T
TID|(E) 

• closure1(S • E$, {})

S • E$, {}

E • E+T, {$}

E • T, {$}

E • E+T, {+}

E • T, {+}

T • ID, {+}

T • (E), {+}
T • ID, {$}

T • (E), {$}

closure1(S • E$, {})=
{
S • E$, {};
E • E+T, {$+}
E • T, {$+}
T • ID, {$+}
T • (E), {$+}
}

How many 
configures?
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LR(1) Parsing
• Given an LR(1) configuration set s, we 

compute its successor, s', under a symbol X
– go_to1(s,X)
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LR(1) Parsing

• We can build a finite automation that is 
analogue of the LR(0) CFSM 
– LR(1) FSM, LR(1) machine

• The relationship between CFSM and LR(1) 
macine
– By merging LR(1) machine’s configuration sets, 

we can obtain CFSM 
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• G3

SE$
EE+T|T
TT*P|P
PID|(E)

Is G3 an LR(0)
Grammar?



36



37

LR(1) Parsing
• The go_to table used to drive an LR(1) is 

extracted directly from the LR(1) machine
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LR(1) Parsing
• Action table is extracted directly from the 

configuration sets of the LR(1) machine
• A projection function, P

– P : S1Vt2Q

• S1 be the set of LR(1) machine states

• P(s,a)={Reducei | B •,a s and 
production i is B }  (if A• 
a,b  s Then {Shift} Else )
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LR(1) Parsing
• G is LR(1) if and only if 

– s S1 a Vt |P(s,a)|1

• If G is LR(1), the action table is trivially extracted 
from P
– P(s,$)={Shift}  action[s][$]=Accept
– P(s,a)={Shift}, a$  action[s][a]=Shift
– P(s,a)={Reducei},  action[s][a]=Reducei

– P(s,a)=  action[s][a]=Error
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SLR(1) Parsing

• LR(1) parsers are the most powerful class of 
shift-reduce parsers, using a single 
lookahead
– LR(1) grammars exist for virtually all 

programming languages
– LR(1)’s problem is that the LR(1) machine 

contains so many states that the go_to and 
action tables become prohibitively large
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SLR(1) Parsing

• In reaction to the space inefficiency of LR(1) 
tables, computer scientists have devised parsing 
techniques that are almost as powerful as LR(1) 
but that require far smaller tables
1. One is to start with the CFSM, and then add 

lookahead after the CFSM is build
– SLR(1)

2. The other approach to reducing LR(1)’s space 
inefficiencies is to merger inessential LR(1) states
– LALR(1)
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SLR(1) Parsing

• SLR(1) stands for Simple LR(1)
– One-symbol lookahead 
– Lookaheads are not built directly into 

configurations but rather are added after the 
LR(0) configuration sets are built

– An SLR(1) parser will perform a reduce action 
for configuration B  • if the lookahead 
symbol is in the set Follow(B)
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SLR(1) Parsing

• The SLR(1) projection function, from 
CFSM states, 
– P : S0Vt2Q

– P(s,a)={Reducei | B •,a Follow(B) and 
production i is B }  (if A • a  s
for a Vt Then {Shift} Else )
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SLR(1) Parsing
• G is SLR(1) if and only if 

– s S0 a Vt |P(s,a)|1

• If G is SLR(1), the action table is trivially 
extracted from P
– P(s,$)={Shift}  action[s][$]=Accept
– P(s,a)={Shift}, a$  action[s][a]=Shift
– P(s,a)={Reducei},  action[s][a]=Reducei

– P(s,a)=  action[s][a]=Error
• Clearly SLR(1) is a proper superset of LR(0)
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SLR(1) Parsing
• Consider G3

– It is LR(1) but not 
LR(0)

– See states 7,11
– Follow(E)={$,+,)}

SE$
EE+T|T
TT*P|P
PID|(E)
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SE$
EE+T|T
TT*P|P
PID|(E)

G3 is both SLR(1) and LR(1).
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Limitations of the SLR(1) Technique
• The use of Follow sets to estimate the 

lookaheads that predict reduce actions is 
less precise than using the exact lookaheads 
incorporated into LR(1) configurations
– Consider G4

Elem(List, Elem)
ElemScalar
ListList,Elem
List Elem
Scalar ID
Scalar(Scalar)

Fellow(Elem)={“)”,”,”,….}
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Fellow(Elem)={“)”,”,”,….}

LR(1) lookahead for 
ElemScalar • is “,”
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LALR(1)

• LALR(1) parsers can be built by first 
constructing an LR(1) parser and then 
merging states
– An LALR(1) parser is an LR(1) parser in which 

all states that differ only in the lookahead 
components of the configurations are merged

– LALR is an acronym for Look Ahead LR
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The core of a configuration

• The core of the above two configurations is the 
same

EE+T
T  T*P
T P
P id
P (E)
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States Merge
• Cognate(s)={c|cs, core(s)=s}

EE+T
T  T*P
T P
P id
P (E)

s

Cognate( ) =
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LALR(1)
• LALR(1)  machine
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LALR(1)
• The CFSM state is transformed into its 

LALR(1) Cognate 
– P : S0Vt2Q

– P(s,a)={Reducei | B •,a Cognate(s) and 
production i is B }  (if A • a  s
Then {Shift} Else )
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LALR(1) Parsing
• G is LALR(1) if and only if 

– s S0 a Vt |P(s,a)|1

• If G is LALR(1), the action table is trivially 
extracted from P
– P(s,$)={Shift}  action[s][$]=Accept
– P(s,a)={Shift}, a$  action[s][a]=Shift
– P(s,a)={Reducei},  action[s][a]=Reducei

– P(s,a)=  action[s][a]=Error
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LALR(1) Parsing
• Consider G5

<stmt>ID
<stmt><var>:=<expr>
<var>  ID
<var>  ID [<expr>] 
<expr><var>

• Assume statements are separated by ;’s, the 
grammar is not SLR(1) because
;  Follow(<stmt>) and
;  Follow(<var>), since <expr><var>
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LALR(1) Parsing

• However, in LALR(1), if we use <var> 
ID the next symbol must be :=
so  action[ 1, := ] = reduce(<var>  ID)
action[ 1, ; ]   = reduce(<stmt>  ID)
action[ 1,[ ]    = shift

• There is no conflict.
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LALR(1) Parsing
• A common technique to put an LALR(1) grammar 

into SLR(1) form is to introduce a new 
nonterminal whose global (i.e. SLR) lookaheads 
more nearly correspond to LALR’s exact look 
aheads
– Follow(<lhs>) = {:=}

<stmt>ID
<stmt><var>:=<expr>
<var>  ID
<var>  ID [<expr>] 
<expr><var>

<stmt>ID
<stmt><lhs>:=<expr>
<lhs>  ID
<lhs>  ID [expr>] 
<var>  ID
<var>  ID [expr>] 
<expr><var>
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LALR(1) Parsing
• At times, it is the CFSM itself that is at fault. 

S(Exp1)
S[Exp1]
S(Exp2]
S[Exp2)
<Exp1>ID
<Exp2>ID

• A different expression nonterminal is used to allow error or 
warning diagnostics
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Building LALR(1) Parsers

• In the definition of LALR(1)
– An LR(1) machine is first built, and then its 

states are merged to form an automaton 
identical in structure to the CFSM

• May be quite inefficient
– An alternative is to build the CFSM first.

• Then LALR(1) lookaheads are “propagated” from 
configuration to configuration
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Building LALR(1) Parsers

• Propagate links:
– Case 1: one configuration is created from 

another in a previous state via a shift operation

A •X , L1  A X•  , L2
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Building LALR(1) Parsers

• Propagate links:
– Case 2: one configuration is created as the 

result of a closure or prediction operation on 
another configuration

B •A , L1

A • , L2

L2={ x|xFirst(t) and t L1 }
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Building LALR(1) Parsers
• Step 1: After the CFSM is built, we can create all 

the necessary propagate links to transmit 
lookaheads from one configuration to another

• Step 2: spontaneous lookaheads are determined
– By including in L2, for configuration A,L2, all 

spontaneous lookaheads induced by configurations of 
the form B    A,L1

• These are simply the non- values of First() 

• Step 3: Then, propagate lookaheads via the 
propagate links
– See figure 6.25
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Building LALR(1) Parsers
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Building LALR(1) Parsers
• A number of LALR(1) parser generators use 

lookahead propagation to compute the parser 
action table
– LALRGen uses the propagation algorithm
– YACC examines each state repeatedly

• An intriguing alternative to propagating LALR 
lookaheads is to compute them as needed by doing 
a backward search through the CFSM
– Read it yourself.  P. 176, Para. 3
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Building LALR(1) Parsers

• An intriguing alternative 
to propagating LALR 
lookaheads is to compute 
them as needed by doing a 
backward search through 
the CFSM
– Read it yourself.  P. 176, 

Para. 3



69

Calling Semantic Routines in 
Shift-Reduce Parsers

• Shift-reduce parsers can normally handle larger 
classes of grammars than LL(1) parsers, which is a 
major reason for their popularity

• Shift-reduce parsers are not predictive, so we 
cannot always be sure what production is being 
recognized until its entire right-hand side has been 
matched
– The semantic routines can be invoked only after a 

production is recognized and reduced
• Action symbols only at the extreme right end of a right-hand 

side
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Calling Semantic Routines in 
Shift-Reduce Parsers

• Two common tricks are known that allow more flexible 
placement of semantic routine calls

• For example,
<stmt>if <expr> then <stmts> else <stmts> end if

• We need to call semantic routines after the conditional 
expression else and end if are matched
– Solution: create new nonterminals that generate 

<stmt>if <expr> <test cond> 
then <stmts> <process then part> 
else <stmts> end if

<test cond>
<process than part>
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Calling Semantic Routines in 
Shift-Reduce Parsers

• If the right-hand sides differ in the semantic routines that 
are to be called, the parser will be unable to correctly 
determine which routines to invoke
– Ambiguity will manifest. For example,

<stmt>if <expr> <test cond1> 
then <stmts> <process then part> 
else <stmts> end if;

<stmt>if <expr> <test cond2> 
then <stmts> <process then part> 
end if;

<test cond1>
<test cond2>
<process than part>
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Calling Semantic Routines in 
Shift-Reduce Parsers

• An alternative to the use of –generating
nonterminals is to break a production into a 
number of pieces, with the breaks placed where 
semantic routines are required

<stmt><if head><then part><else part>
<if head>if <expr>
<then part>then <stmts>
<else part>then <stmts> end if;

– This approach can make productions harder to read but 
has the advantage that no –generating are needed 
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Uses (and Misuses) of Controlled 
Ambiguity

• Research has shown that ambiguity, if 
controlled, can be of value in producing 
efficient parsers for real programming 
languages.

• The following grammar is not LR(1)
Stmt if Expr then Stmt
Stmt if Expr then Stmt else Stmt
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Uses (and Misuses) of Controlled 
Ambiguity

• The following grammar is not ambiguous
<stmt><matched>|<unmatched>
<matched> if <logic_expr> then <matched> else <matched>

| <any_non-if_statement> 
<unmatched> if <logic_expr> then <stmt>

| if <logic_expr> then <matched> else <unmatched>
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Uses (and Misuses) of Controlled 
Ambiguity

• In LALRGen, when conflicts occur, we may use 
the option resolve to give preference to earlier 
productions.

• In YACC, conflicts are solved in
– 1. shift is preferred to reduce;
– 2. earlier productions are preferred.

• Grammars with conflicts are usually smaller.
• Application: operator precedence and 

associativity.
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Uses (and Misuses) of Controlled 
Ambiguity

• We no longer specify a parser purely in 
terms of the grammar it parses, but rather 
we explicitly include auxiliary rules to 
disambiguate conflicts in the grammar.
– We will present how to specify auxiliary rules 

in yacc when we introduce the yacc.
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Uses (and Misuses) of Controlled 
Ambiguity

• The precedence values assigned to operators 
resolve most shift-reduce conflicts of the form
Expr Expr OP1 Expr
Expr Expr OP2 Expr

• Rules:
– If Op1 has a higher precedence than Op2, we Reduce.
– If Op2 has a higher precedence, we shift.
– If Op1 and Op2 have the same precedence, we use the 

associativity definitions.
• Right-associative, we shift. Left-associative, we reduce. 
• No-associative, we signal, and error.
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EE+E
EE*E
EID

EE+E
EE*E

EID

EE+E
EE+E
EE*E
EID

EE*E
EE+E
EE*E
EID

EE+E
EE+E
EE*E

EE*E
EE+E
EE*E

EID

EID

ID

E

E

E

+

*

ID

ID
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Uses (and Misuses) of Controlled 
Ambiguity (Cont’d)

• More example: Page 234 of “lex&yacc”

%nonassoc LOWER_THAN_ELSE
%nonassoc ELSE
%%

stmt:    IF expr stmt       %prec LOWER_THAN_ELSE
|   IF expr stmt ELSE stmt; 
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Uses (and Misuses) of Controlled 
Ambiguity (Cont’d)

• If your language uses a THEN keyword (like Pascal does):

%nonassoc THAN
%nonassoc ELSE
%%

stmt:    IF expr THAN stmt
|   IF expr THAN stmt ELSE stmt
; 
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Optimizing Parse Tables

• A number of improvements can be made to 
decrease the space needs of an LR parse
– Merging go_to and action tables to a single 

table
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Optimizing Parse Tables

• Encoding parse table
– As integers

• Error entries as zeros
• Reduce actions as positive integers
• Shift actions as negative integers

• Single reduce states
– E.g. state 4 in Figure 6.35

• State 5 can be eliminated
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Optimizing Parse Tables

• See figure 6.36


