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Working rule for finding C.F. of irreducible
non-homogeneous linear partial differential equations with

constants coefficients.

Let the given irreducible non-homogeneous linear partial
differential equations with constants coefficients be
F (D,D′)z = φ(x, y)
Step-I: If necessary Factorize F (D,D′) in the form
F1(D,D

′)F2(D,D
′), where F1(D,D

′) consists of product of
linear factors in D,D′ and F2(D,D

′) consists of product of
irreducible factors in D,D′.
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Step-II: Write the part of C.F. of linear factors F1(D,D
′) as

usual method
Step-III: Write the part of C.F. of irreducible factors
F2(D,D

′) by taking a trial solution

C.F. =
∑
Aehx+ky,

where A, h and k are arbitrary constants such that F (h, k) = 0
Step-IV: Adding the part of C.F. of reducible factors
F1(D,D

′), obtained in Step-II and part of C.F. of irreducible
factors F2(D,D

′), obtained in Step-III.
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Example

Solve the PDE (D −D′2)z = 0.

Solution: Here D −D′2 is not a linear factors in D and D′.
Let the trial solution of given equation is

z =
∑
Aehx+ky

Then Dz = Ahehx+ky and D′2z = Ak2ehx+ky.Putting these
values in the given equation, we get

Ahehx+ky −Ak2ehx+ky = 0 =⇒ A(h− k2)ehx+ky = 0

h− k2 = 0 =⇒ h = k2.
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Replacing h by k2, the most general solution of the given
equation is

z =
∑
Aek

2x+ky,

where A and k are arbitrary constant.

Dr. G.K. Prajapati LNJPIT, Chapra Homogeneous Linear Partial Differential ...



Homogeneous
Linear Partial
Differential ...

Dr. G.K.
Prajapati

LNJPIT,
Chapra

Introduction

Replacing h by k2, the most general solution of the given
equation is

z =
∑
Aek

2x+ky,

where A and k are arbitrary constant.

Dr. G.K. Prajapati LNJPIT, Chapra Homogeneous Linear Partial Differential ...



Homogeneous
Linear Partial
Differential ...

Dr. G.K.
Prajapati

LNJPIT,
Chapra

Introduction

Replacing h by k2, the most general solution of the given
equation is

z =
∑
Aek

2x+ky,

where A and k are arbitrary constant.

Dr. G.K. Prajapati LNJPIT, Chapra Homogeneous Linear Partial Differential ...



Homogeneous
Linear Partial
Differential ...

Dr. G.K.
Prajapati

LNJPIT,
Chapra

Introduction

Example

Solve the PDE (D − 2D′ − 1)(D − 2D′2 − 1)z = 0.

Solution: Here (D − 2D′ − 1) is a linear factors in D and
D′.Therefore its complementary function (C.F.) is

exf1(y + 2x),

where f1 is an arbitrary function.To find the complementary
function (C.F.) corresponding factor (D − 2D′2 − 1)z.Let the
trial solution of this factor is

z =
∑
Aehx+ky
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Then Dz = Ahehx+kyand D′2z = Ak2ehx+ky.Putting these
values in the factor (D − 2D′2 − 1)z, we get

Ahehx+ky − 2Ak2ehx+ky −
∑
Aehx+ky = 0 =⇒

A(h− 2k2 − 1)ehx+ky = 0

h− 2k2 − 1 = 0 =⇒ h = 2k2 + 1.

Replacing h by 2k2 + 1, the complementary function (C.F.)
corresponding factor (D − 2D′2 − 1)z
isC.F. =

∑
Ae(k

2+1)x+ky. Now the required general solution of
the given equation is

z = exf1(y + 2x) +
∑
Ae(k

2+1)x+ky,

where A and k are arbitrary constant.
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values in the factor (D2 −D′)z, we get

Ah2ehx+ky −Akehx+ky = 0 =⇒ A(h2 − k)ehx+ky = 0
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h2 − k = 0 =⇒ k = h2.

Replacing k by h2, the complementary function (C.F.)
corresponding factor (D2 −D′)z isC.F. =

∑
Aehx+h2y.
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Again to find the complementary function (C.F.) corresponding
factor (2D2 −D′)z.Let the trial solution of this factor is

z =
∑
A1e

h1x+k1y

Then D2z = A1h
2
1e

h1x+k1yand D′z = A1k1e
h1x+k1y.Putting

these values in the factor (2D2 −D′)z, we get

2A1h
2
1e

h1x+k1y −A1k1e
h1x+k1y = 0 =⇒

A1(2h
2
1 − k1)eh1x+k1y = 0

Dr. G.K. Prajapati LNJPIT, Chapra Homogeneous Linear Partial Differential ...



Homogeneous
Linear Partial
Differential ...

Dr. G.K.
Prajapati

LNJPIT,
Chapra

Introduction

Again to find the complementary function (C.F.) corresponding
factor (2D2 −D′)z.Let the trial solution of this factor is

z =
∑
A1e

h1x+k1y

Then D2z = A1h
2
1e

h1x+k1yand D′z = A1k1e
h1x+k1y.Putting

these values in the factor (2D2 −D′)z, we get

2A1h
2
1e

h1x+k1y −A1k1e
h1x+k1y = 0 =⇒

A1(2h
2
1 − k1)eh1x+k1y = 0

Dr. G.K. Prajapati LNJPIT, Chapra Homogeneous Linear Partial Differential ...



Homogeneous
Linear Partial
Differential ...

Dr. G.K.
Prajapati

LNJPIT,
Chapra

Introduction

Again to find the complementary function (C.F.) corresponding
factor (2D2 −D′)z.Let the trial solution of this factor is

z =
∑
A1e

h1x+k1y

Then D2z = A1h
2
1e

h1x+k1yand D′z = A1k1e
h1x+k1y.Putting

these values in the factor (2D2 −D′)z, we get

2A1h
2
1e

h1x+k1y −A1k1e
h1x+k1y = 0 =⇒

A1(2h
2
1 − k1)eh1x+k1y = 0

Dr. G.K. Prajapati LNJPIT, Chapra Homogeneous Linear Partial Differential ...



Homogeneous
Linear Partial
Differential ...

Dr. G.K.
Prajapati

LNJPIT,
Chapra

Introduction

Again to find the complementary function (C.F.) corresponding
factor (2D2 −D′)z.Let the trial solution of this factor is

z =
∑
A1e

h1x+k1y

Then D2z = A1h
2
1e

h1x+k1yand D′z = A1k1e
h1x+k1y.Putting

these values in the factor (2D2 −D′)z, we get

2A1h
2
1e

h1x+k1y −A1k1e
h1x+k1y = 0 =⇒

A1(2h
2
1 − k1)eh1x+k1y = 0

Dr. G.K. Prajapati LNJPIT, Chapra Homogeneous Linear Partial Differential ...



Homogeneous
Linear Partial
Differential ...

Dr. G.K.
Prajapati

LNJPIT,
Chapra

Introduction

Again to find the complementary function (C.F.) corresponding
factor (2D2 −D′)z.Let the trial solution of this factor is

z =
∑
A1e

h1x+k1y

Then D2z = A1h
2
1e

h1x+k1yand D′z = A1k1e
h1x+k1y.Putting

these values in the factor (2D2 −D′)z, we get

2A1h
2
1e

h1x+k1y −A1k1e
h1x+k1y = 0 =⇒

A1(2h
2
1 − k1)eh1x+k1y = 0

Dr. G.K. Prajapati LNJPIT, Chapra Homogeneous Linear Partial Differential ...



Homogeneous
Linear Partial
Differential ...

Dr. G.K.
Prajapati

LNJPIT,
Chapra

Introduction

Again to find the complementary function (C.F.) corresponding
factor (2D2 −D′)z.Let the trial solution of this factor is

z =
∑
A1e

h1x+k1y

Then D2z = A1h
2
1e

h1x+k1yand D′z = A1k1e
h1x+k1y.Putting

these values in the factor (2D2 −D′)z, we get

2A1h
2
1e

h1x+k1y −A1k1e
h1x+k1y = 0 =⇒

A1(2h
2
1 − k1)eh1x+k1y = 0

Dr. G.K. Prajapati LNJPIT, Chapra Homogeneous Linear Partial Differential ...



Homogeneous
Linear Partial
Differential ...

Dr. G.K.
Prajapati

LNJPIT,
Chapra

Introduction

Again to find the complementary function (C.F.) corresponding
factor (2D2 −D′)z.Let the trial solution of this factor is

z =
∑
A1e

h1x+k1y

Then D2z = A1h
2
1e

h1x+k1yand D′z = A1k1e
h1x+k1y.Putting

these values in the factor (2D2 −D′)z, we get

2A1h
2
1e

h1x+k1y −A1k1e
h1x+k1y = 0 =⇒

A1(2h
2
1 − k1)eh1x+k1y = 0

Dr. G.K. Prajapati LNJPIT, Chapra Homogeneous Linear Partial Differential ...



Homogeneous
Linear Partial
Differential ...

Dr. G.K.
Prajapati

LNJPIT,
Chapra

Introduction

2h21 − k1 = 0 =⇒ k1 = 2h21.

Replacing k1 by 2h21, the complementary function (C.F.)
corresponding factor (2D2 −D′)z isC.F. =

∑
A1e

h1x+2h2
1y.

Now the required general solution of the given equation is

z =
∑
Aehx+h2y +

∑
A1e

h1x+2h2
1y,

where A, A1, h and h1 are arbitrary constant.
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