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Classification of Partial Differential Equation

METHOD OF SEPARATION OF VARIABLES

In this method, we assume that the dependent variable is the
product of two functions, each of which involves only one of
the independent variables. So two ordinary differential
equations are formed.

Notations: Let u(z,t) is a function of two variable x and t.
We use the following notations:

8711 ou

:uw:ux(x,t), —_— :ut:ut(l',t),

o )
u u
(ax>m = ta(mt). <at>t0 = u(@,0)
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LgJTIT Solve the boundary value problem G_Z = a_y if
_ Q.3
Introduction ’U,(O, y) = 8e Y.
Solution: Given that
ou ou
22—y = 1
(933‘ 6y7 ( )

with boundary condition u(0,y) = 8¢=3.
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Sl Let the given equation has the solution of the form

of Partial
Diffrenta . u(z,y) = X(x)Y (y), where X is function of x alone and Y is

Dr. G.K.

Prajapati function of y alone. Now 8—u = X'(x)Y (y) and
T

ou : . .
i — = X(2)Y’(y). Putting these values in given equation, we

Introduction
X' Y’

XY =4XY = = — 2
Xy (2)

Since x and y are independent variables, therefore above

equation can only true if each side is equal to the same

constant. i.e.
X Y

- = — = - =
X=7 k(constant) = X' —4kX =0 and
—kY =0
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These are ordinary differential equation of first order first
degree. Therefore its solutions will be

/

X
Yzélk: = log X =4kz +logey, —= — =4k —
C1

X = creth®

Similarly solution corresponding to Y/ — kY =0 , we get
Y = €. Substituting the values of X and Y in the trail
solution u(x,y) = X(2)Y (y) i.e.

u(z,y) = c1e* crekV = u(z,y) = Cethrthy,

where C' = cjcy is another arbitrary constant.
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NUPIT. Now putting x = 0 and using boundary condition
ize u(0,y) = 8¢~3Y, we have

Introduction

uw(0,7) = Ce*F0Thy — 83y = Ceky

Thus we have C = 8 and k = —3. Thus the required solution
will be u(x,y) = 8e~122-3,
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e Using the method of separation of variable,

Chapra sol eau 2 u + here ( 0) 6 _3z

ve— =2— 4 u, w u(x,0) = 6e™°%.
Ox ot

Introduction

Solution: Given that
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Let the given equation has the solution of the form
u(x,t) = X(x)T'(t), where X is function of = alone and T is

function of ¢ alone. Now - = X'(z)T(t) and

or
0
a—? X (z)T'(t). Putting these values in given equation, we
have

X T
X'T=2XT'+XT = X'T=XQT'+T) = J =25+1,

(4)
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o e equation can only true if each side is equal to the same
Prajapati constant. i.e.

: X’ T’
Chapra ~ = 2 <T> + 1 = k(constant) = X' — kX =0 and
Introduction 2T/ + T — I{T == 0

These are ordinary differential equation of first order first
degree. Therefore its solutions will be
!/

X —-kX=0 = %zk = log X =kx +loge; =

X
Tk = X =cem”
C1
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Now, solution corresponding to
LNJPIT, ! ! T’ (k — 1)

Chapra 2T + T - kT — O — 2T — T(k; - 1) — 2? — T f
Introduction we get T' = cze( 2 t. Substituting the values of X and T in
the trail solution u(:r:,t) = X(2)T(t) i.e.

(k—=1)t (k—1)
u(z,t) = cre?.coe” 2 L u(z,t) = Cekot 2 t,

where C' = cqcy is another arbitrary constant.
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- Now putting £ = 0 and using boundary condition
Chapra u(z,0) = 6e73%, we have

Introduction (k—1).0
2

u(z,0) = Cehrt = 6e73% = Cek

Thus we have C = 6 and k = —3. Thus the required solution
will be u(x,t) = 6e3272Y.
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General solution of one-dimensional wave (vibrational)
o equation satisfying the given boundary and initial
conditions

Introduction

Consider one-dimensional wave equation
Pu_ 1o
0z 2 o2’
with boundary conditions «(0,¢) = 0 and u(a,t) =0,
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- 0%u 1 9%u
LNJPIT, W - 072@7 (5)

Chapra

Introduction with boundary conditions «(0,¢) = 0 and u(a,t) = 0.

Let the given equation has the solution of the form

u(x,t) = X(x)T'(t), where X is function of = alone and T is
2

function of ¢ alone. Now g;; = X"(x)T(t) and
0%u

o2
have

= X (2)T"(t). Putting these values in given equation, we
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" _ /! —
LNJPIT, X T - gXT — 7 - 027T, (6)

Chapra
Since = and t are independent variables, therefore above
equation can only true if each side is equal to the same
constant. i.e.
XI/ T//
X T

Introduction

k(constant) — X" — kX =0 and
T" — kT =0
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Introduction constant coefficient. Now to solve these two equations
X" — kX =0and T" — 2kT = 0, three cases arises:
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LNJPIT, X'=0 = X=a1z+ay

Chapra
and
Introduction

T"=0 = T = ast + ay.

Thus the required solution is

u(x,t) = (a1 + a2)(ast + ay).
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Case-1l When k > 0, we can take k = A\%(say), then both
equations reduces to

X" —X\2X =0 = the auxiliary equation is
(m? —X?) =0 = m = +\. Therefore its solution will be
X = b16>‘x + b2€_>‘w

and
T" —ANT =0 = T = bge + bye™ M,
Thus the required solution is

u(z,t) = (b1 + boe ) (b3eM + bye M),

(8)
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el Case-lll When k < 0, we can take k = —\%(say), then both
Differential equations reduces to

Dr. G.K.

Raiapat X" +X2X =0 = the auxiliary equation is

BT (m? 4+ A\2?) =0 = m = £\i. Therefore its solution will be

Chapra X = ¢1 cos(Ax) + cosin(Ax)

Introduction

and
T" 4+ ANT =0 = T = c3cos(cAt) + cysin(cAt).
Thus the required solution is

u(z,t) = (c1 cos(Ax) + o sin(Ax))(e3 cos(cAt) + ¢4 sin(cAt)).

(9)
Thus the equation (7), (8) and (9) are various possible solution
of the given wave equation.
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