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with boundary conditions «(0,¢) = 0 and u(a,t) =0,

Consider one-dimensional wave equation
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Introduction with boundary conditions «(0,t) = 0 and u(a,t) = 0.

Let the given equation has the solution of the form

u(z,t) = X (x)T(t), where X is function of x alone and T is
2

function of ¢ alone. Now gz = X" (x)T(t) and
x
0%u

S = X@T" (1),
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X'T = 02 XT" = X 02T ) (2)
LNJPIT,

Chapra Since x and ¢ are independent variables, therefore above

Introduction equation can only true if each side is equal to the same

constant. i.e.
X// T//
~ = a7 = k(constant) — X" — kX =0 and
c

T" — kT =0

These are ordinary differential equation of second order with
constant coefficient. Now to solve these two equations
X" — kX =0and T — c?kT = 0, three cases arises:
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T"=0 = T = ast + ay.

Thus the required solution is

u(x,t) = (a1 + a2)(ast + ay).
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Case-1l When k > 0, we can take k = A\%(say), then both
equations reduces to

X" —X\2X =0 = the auxiliary equation is
(m? —X?) =0 = m = +\. Therefore its solution will be
X = b16>‘x + b2€_>‘w

and
T" —ANT =0 = T = bge + bye™ M,
Thus the required solution is

u(z,t) = (b1 + boe ) (b3eM + bye M),

(4)
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Differential equations reduces to
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Raiapat X" +X2X =0 = the auxiliary equation is

BT (m? 4+ A\2?) =0 = m = £\i. Therefore its solution will be

Chapra X = ¢1 cos(Ax) + cosin(Ax)

Introduction

and
T" 4+ ANT =0 = T = c3cos(cAt) + cysin(cAt).
Thus the required solution is

u(z,t) = (c1 cos(Ax) + o sin(Ax))(e3 cos(cAt) + ¢4 sin(cAt)).

(5)
Thus the equation (3), (4) and (5) are various possible solution
of the given wave equation.
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Given boundary conditions are u(0,t) = u(a,t) =0 V¢ In
view of the boundary condition, the solution given by the
equation (3) becomes

O:ag(a3t+a4) and 0=(a1a+a2)(a3t+a2)
= a3=0 and (ajat+a2)=0 = a1 =a2=0

Hence u(x,t) =0 Vt. This is a trivial solution.
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the equation (4) becomes
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0= (b + bz)(bged‘t + b46_c>‘t) and
Introduction 0= (blez\a 4 b2ef)\a)(b3€c)\t + b4€fc)\t)

- (bl + bg) =0 and bleAa + bgef)‘a =0
— b1 = b2 =0

Hence u(x,t) =0 V¢t. This is also a trivial solution.
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Finally, in view of the boundary condition, the solution given by
the equation (5) becomes

0 = ci(cg cos(eAt) + cqsin(eAt))  and
0 = (e1 cos(Aa) + casin(Aa))(cs cos(cAt) + ¢4 sin(cAt))

= ¢1=0 and cgsinda=0

Now for non-trivial solution of given wave equation, we can not
take co =0

= sina=0 = da=nr n=123,..

Thus A= "7 n=1,2,3,...
a
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nmct nmct
T + F, sin T >

n
Up(x,t) = sin i <En cos
a

a
n=123..

Where E,, = (cac3) and F,, = (cacq) are new arbitrary
constants.
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Since the given wave equation is linear, its most general
i solution is obtained by applying the principle of superposition,
the required solution is

u(z,t) =37 up(z,t) =

nmw nmct nmct
Yoy sin7 (Encos - + F, sin . ) n=123,..
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Consider one-dimensional wave equation

0%u 1 0%u

oz 2 o2’
where u(z,t) is the deflection of the string. the solution of this
equation shows how the string moves. More precisely, if the
ends of string are fixed at x = 0 and = = a, we have the two
boundary conditions.

Introduction

u(0,t) =0 and u(a,t) =0, Vt.
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- deflection (deflection at ¢ = 0) and on the intial velocity
Chapra (velocity at t = 0). Denoting the initial deflection by f(x) and
initial velocity by g(x), we get two initial conditions
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u(x,0) = f(z), 0<z<a
and
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LNJPIT,

Chapra with boundary conditions u(0,¢) = 0,

u(a,t) = 0,u(z,0) = f(z) and w(x,0) = g(x), 0<z<a.

Let the given equation has the solution of the form

u(x,t) = X(x)T'(t), where X is function of = alone and T is
2

Introduction

0
function of ¢ alone. Now 8—2 = X" (x)T(t) and
T

82
a—tg = X (x)T"(t). Putting these values in given equation, we
have ) <
X'T=SXT' — = = 7

c2 X 2T (7)
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Since = and ¢ are independent variables, therefore above

equation can only true if each side is equal to the same

constant. i.e.

X/I T//

X 2T k(constant) =— X" — kX =0 and
T" — kT =0

These are ordinary differential equation of second order with
constant coefficient. Now to solve these two equations
X" — kX =0and T" — kT = 0, three cases arises:
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Case-l1 When k = 0, then both equations reduces to

X'"=0 = X =a1x+as

Using boundary conditions u(0,t) = 0 = u(a,t), the trial
solution becomes

0=X(0)T(t) and 0= X(a)T(t).

Since T'(t) =0 = u(x,t) = 0, so we suppose that T'(t) # 0.
Then we have X(0) =0 and X (a) = 0. Now using these
boundary conditions, the solution X = a;x + as becomes
0=a1.0+as and 0 = aj.a+as — a; =0 = a9, so that

X (x) =0, which yields u(x,t) = 0. So we reject case-l, when
kE=0.

Dr. G.K. Prajapati LNJPIT, Chapra Classification of Partial Differential ...



aueeosl  Case-ll When k > 0, we can take k = A?(say), then first
Dot o equations reduces to

Prajapati X" - X2X =0 = the auxiliary equation is

(m? —A2) =0 = m = £\. Therefore its solution will be
=t X = b1 + bpe N

Introduction Using boundary conditions u(0,t) = 0 = u(a, t), the trial
solution becomes
0=X(0)T(t) and 0= X(a)T(t).

Since T'(t) =0 = wu(x,t) =0, so we suppose that T'(t) # 0.
Then we have X(0) =0 and X (a) = 0. Now using these
boundary conditions, the solution X = b1e M + boe~* becomes
0=0b1e*? +bye 0 and 0 = by + bye ™ = 0=1b; +by
and by + bye™* = by = by = 0, so that X () = 0, which
yields u(z,t) = 0. So again we reject case-ll, when k& > 0.
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Chapra X" 4+ XX =0 = the auxiliary equation is
(m? +)2) =0 = m = £\i. Therefore its solution will be
X = ¢1 cos(Ax) + cosin(Ax)
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Using boundary conditions u(0,t) = 0 = u(a,t), the trial
solution becomes

Dr. G.K. Prajapati LNJPIT, Chapra Classification of Partial Differential ...



Classification
of Partial
Differential ...

Dr. G.K.
Prajapati

LNJPIT,
Chapra

Introduction

Since T'(t) =0 = wu(x,t) =0, so we suppose that T'(t) # 0.
Then we have X(0) =0 and X (a) = 0. Now using these
boundary conditions, the solution X = ¢ cos(Ax) + c2 sin(Ax)
becomes 0 = ¢; cos(A.0) + c2sin(A.0) and

0 = ¢1 cos(Aa) + casin(Aa) = ¢; =0 and

0 = casin(Aa) =0

Now for non-trivial solution of given wave equation, we can not
take co =0

= sinda=0 = da=nmr n=123,..
Thus A= """ n=1,2,3,...
a
Hence non-zero solution X,,(x) are given by
nmwx

(c2)n sin (—)

a
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Similarly the solution corresponding to the equation
T+ XT=0is

nmct . nmct
T, (t) = (c3)y cos + (c4)pn sin 9)
Hence the required solution is
> nwx nm nmct
u(z,t) = ZsinT <En cos — +Fn sin a> (10)

Where E,, = ((c2)n(c3)) and Fy, = ((c2)n(ca)rn) are new
arbitrary constants.
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In order to find a solution which also satisfy u(z,0) = f(z) and
ug(x,0) = g(x), We differentiate equation (10) w.r.t. ¢,

o > — t t
aiztl — Z {sin sz ( ZWCEn SiIl nme + L7-‘-05"771 COS nre ) }

— a a a
(11)

Put ¢ = 0 in equation (10) and (11) and using initial equation

u(z,0) = f(z) and us(x,0) = g(x), we get
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Which are Fourier sin series of expansion f(z) and g(z),
respectively. Accordingly we get

2 a
E, = / f(z)sin " (14)
a Jo a
and 5 u
F,=— [ g(x)sin DY g (15)
nmce Jo a
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E, and F,, are given by the equation (14) and (15).
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