Lok Nayak Jai Prakash Institute of Technology
Chapra, Bihar-841302

Classification
of Partial
Differential ...

br. GK. Mathematics-1l (Differential Equations)
T Lecture Notes
Ly April 16, 2020

by

Dr. G.K.Prajapati
Department of Applied Science and Humanities

LNJPIT, Chapra, Bihar-841302

Dr. G.K. Prajapati LNJPIT, Chapra Classification of Partial Differential ...



Classification
of Partial
Differential ...

Dr. G.K.

Prajapati
o Example

Lg:fﬁ’)'f Discuss D'Alembert’s solution of one dimensional wave

equation. or
ntioduction Show that the general solution of the wave equation
%u  0%u
5 .
C"—— = —— IS x.t) = X ct T —ct ’
55 = g 5 1) = ¢(a +ct) + P(w — cf)

where ¢ and 1) are arbitrary functions.
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Let v and w be two new independent variables such that
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w=uaz+ct and v=x—ct (1)

Now
ou_ udw  0udn
or  Owdxr  Ovox
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Again
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at  dwdt ' dvot
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Using equation (1), we have
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Using (3) and (5) reduces to
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i where F' is an arbitrary function of w.

Integrating (8) w.r.t. w, we get

Introduction
u= [ F(w)dw+ ¥(v),
where 9 is an function of v. Then
= ¢(w) + ¢ (v), where ¢p(w) = [ F(w

or

u = ¢(x + ct) + P(x — ct).
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General solution of one-dimensional heat (diffusion)
equation satisfying the given boundary and initial
conditions

Consider one-dimensional heat equation

0%u _10u

oz kot
where u(z,t) is the temperature of the bar. If both the ends of
a bar of length a are at temperature zero and initial
temperature is to be prescribed function f(x) in the bar, then
find the temperature at a subsequent time t. More precisely,
the faces z = 0 and = = a of an infinite slab are maintained at
zero temperature. Given that the temperature u(z,t) = f(x)
at t = 0. Find the temperature at a subsequent time t.
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The initial condition is given by u(z,0) = f(z), 0<z<a
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Let the given equation has the solution of the form
u(z,t) = X(x)T(t), where X is function of x alone and T is
2

function of ¢ alone. Now gz = X"(x)T'(t) and
T
ou

ot
have

= X (x)T'(t). Putting these values in given equation, we

1 X" T
[ s ’ S _ 1
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(constant) = X" — pX =0 and
T — ukT =0

These are ordinary differential equation of second order and

first order with constant coefficient. Now to solve these two

equations
X" —puX =0 (11)

and
T — ukT = 0. (12)

Now three cases arises:
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Case-1 When p = 0, then both equations reduces to
X'=0 = X=a1z+ a2

Using boundary conditions u(0,t) = 0 = u(a,t), the trial
solution u(x,t) = X (z)T(t) becomes

0= X(0)T'(¢) and 0= X(a)T(t).

Since T'(t) =0 = wu(x,t) =0, so we suppose that T'(t) # 0.
Then we have X (0) =0 and X (a) = 0. Now using these
boundary conditions, the solution X = a1x + as becomes
0=a1.0+asand 0 =ai.a+ a2 — a1 =0 = ag, so that

X (x) =0, which yields u(x,t) = 0. So we reject case-l, when
w=0.
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el Case-1l When 1 > 0, we can take p = A?(say), then
Aol cquations X7 — uX = 0 reduces to

Prajapati X" —X2X =0 = the auxiliary equation is

(m? —A2) =0 = m = £\. Therefore its solution will be
=t X = b1 + bpe N

Introduction Using boundary conditions u(0,t) = 0 = u(a, t), the trial
solution u(x,t) X (z)T'(t) becomes
0=X(0)T(t) and 0= X(a)T(t).

Since T'(t) =0 = wu(x,t) =0, so we suppose that T'(t) # 0.
Then we have X(0) =0 and X (a) = 0. Now using these
boundary conditions, the solution X = b1e M + boe~* becomes
0=0b1eM + bye ™0 and 0 = b1 + bpe ™ = 0 =by + by
and bye?® + bye™* = by = by = 0, so that X () = 0, which
yields u(z,t) = 0. So again we reject case-ll, when p > 0.
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Using boundary conditions u(0,t) = 0 = u(a,t), the trial
solution becomes

0=X(0)T() and 0= X(a)T(t).

Since T'(t) =0 = wu(x,t) =0, so we suppose that T'(t) # 0.
Then we have X(0) =0 and X (a) = 0. Now using these
boundary conditions, the solution X = ¢; cos(Ax) + co sin(Ax)
becomes 0 = ¢ cos(A.0) 4 c2 sin(A.0) and

0 = ¢1 cos(Aa) + cgsin(Aa) = ¢ =0 and cz2sin(Aa) =0
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Now for non-trivial solution of given wave equation, we can not

take co =0
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= sina=0 = da=nr n=123,..
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Thus A= """ n=1,2,3,...
a

Hence non-zero solution X,,(x) are given by

nmwx

Xo(2) = (¢2)n sin <7)

a
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(15)
Hence solution is Ty (t) = Dpe~Crt, where Cy, = (n272k/a?)
and D,, = c3 are new arbitrary constants.
The general solution is

up(z,t) = Z E, sin <?) et (16)
n=1

where E,, = (¢2),D,, is another new arbitrary constants.

logT = —)\zkH—log c3 = T =c3e” = T = c3e
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o @) = g Epsin (“20) (17)
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Which are Fourier sin series of expansion f(x). Accordingly we
get

2 [ nmw
n = — f in —d, 1
E /0 (x) sin T (18)

Hence the required solution is given by the equation (16) and
E,, given by the equation (18).
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