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1.1 Partial Differential Equation (PD.E.)

We will be studying functions z = z(x!,x?,...,x") and their partial derivatives. Here x',x?,..., x" are
standard Cartesian coordinates on R”. We sometimes use the alternate notation u(x,y),u(x,y,z), etc.

We also write e.g. z(r, 0, ¢) for spherical coordinates on R?, etc.

Notation 1.1. Let us consider a function u(x,y) of two independent variables x and y. We use the

following notation for partial derivatives:

— Jz _ 9z — 9% — 9% — 9%
P= v 4= 9y = 5= xay t= dy?

Definition 1.1.1 An equation containing one or more partial derivatives of an unknown function
of two or more independent variables is known as a partial differential equation.

m Example 1.1 The example of PDE are as follows:
(1) % + % =z+xy
2
- d %z _ a
(ii) (a—fc) + 55 =208
(i)  pt+g=»

vi) P+2s+3=0

Definition 1.1.2 The order of a partial differential equation is defined as the order of the highest
partial derivative occurring in the partial differential equation. For example: The order of
examples (i) and (iii) are 1 while the order of examples (ii) and (iv) are 2.
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Definition 1.1.3 The degree of a partial differential equation is defined as the degree of the
highest order partial derivative occurring in the partial differential equation after the equation
has been rationalized i.e. made free from redicals and fractions. For example: The degree of
examples (i), (ii) and (iii) is 1 while the degree of example (iv) is 3.

Definition 1.1.4 A partial differential equation is said to be linear if the dependent variable and
its partial derivatives occur only in first degree and are not multiplied. A partial differential
equation which is not linear is called a non-linear partial differential equation. For example: The
examples (i) and (iii) are linear while the examples (ii) and (iv) are non-linear.

Solution of first order Partial Differential Equations

Lagrange’s partial differential equations of first order: A partial differential equation of the
form Pp + Qg = R is called Lagrange’s partial differential equations of first order, where P, Q, R are
functions of x,y,z only and p = 5%, g = o

Working Rule: To solve the Lagrange’s PDE follow the following steps:
Step-I: Rewrite the given PDE into standard form Pp + Qg = R.
Step-II: Write down the auxiliary as
dx _ dy _ dz
P~ Q R
Step-III: By taking any two fraction, solve the above auxiliary equation. Let the two solution be
u=ci;andv=cj.
Step-IV: Write the solution in following any one form:
f(u,v)=0o0ru= f(v)orv= f(u), where f is any arbitrary function.

= Example 1.2 Solve the partial differential equation yp +yg = z> + 1. "

Solution: By comparing with the first order Lagrange’s partial differential equation Pp+ Qg = R,
we get P =1y, Q =y and R = z> + 1. The auxiliary equations are

dx __dy dz
224+1°

y oy
By taking first two fraction, we get % = % == dx=dy
By integrating, we have

x=y+c = x—y=c (1.1)
By taking last two fraction, we get % = szj ;
By integrating, we have

logy=tan 'z4¢, = logy—tan’lz:CZ (1.2)

From equations (1.1) and (1.2), we can write the solutions in following any one form:
f(x—ylogy—tan~'z) =0 orx—y = f(logy —tan"'z) or logy —tan~' z = f(x —y). O

Type-1

= Example 1.3 Solve the partial differential equation y*p — xyg = x(z — 2y). "
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Solution: By comparing with the first order Lagrange’s partial differential equation Pp + Qg = R,
we get P =y?, Q = —xy and R = x(z — 2y). The auxiliary equations are

dx _ dy _ _ dz
v T x(z2y)”

By taking first two fraction, we get
dy d
F=2 = T=2 = xdx+ydy=0
By integrating, we have
¥+y=c (1.3)

By taking last two fraction, we get

dy dz

-y (2=2y)
— zdy —2ydy +ydz =0
— zdy+ydz = 2ydy
= d(yz) = 2ydy

By integrating, we have

=y +a = yz-y =0 (1.4)
From equations (1.3) and (1.4), the solutions is f(x*> +y?,yz—y?) = 0. O
Exercise
Solve the following PDE:

(1) xp+yqg=z Ans. f(x/z,y/z) =0

2) p+qg=1 Ans. f(x—y,x—2)=0

3) Pp+yq+2=0  Ans. f(1—5,;+1)=0
4) yzp+zg=xy  Ans. f(x* -2 x*—y*) =0
(5) zp=x  Ans. f(x*=22,y)=0

Type-2 (Substitution)

= Example 1.4 Solve the partial differential equation xzp + yzq=xy. "

Solution The Lagrange’s auxiliary equations are

dx _ dy _ dz
xz ~ yz Xy’
Taking first two fraction, we get
dx _ dy
x Ty
By integrating, we have
logx =logy+logc; = x=c1y. (1.5)

Now taking last two fraction and by putting x = ¢y in last fraction, we have
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dy _ dz
z T ay’
By integrating, we have
2 2
c1y Z (&9 2 2
2 a2ty TarTEtae o

By putting the value of ¢; = x/y from equation (1.5), we have
Xy—2 =0 (1.7

From equations (1.5) and (1.7) the required solution is f(x/y,xy —z*) =0 O
= Example 1.5 Solve the partial differential equation p 4+ ag = z+ cot(y — ax). .

Solution The Lagrange’s auxiliary equations are

de _dy _ dz
I 7 a = z+cot(y—ax)®
Taking first two fraction, we get
dx __ dy
1 7 a
By integrating, we have
ax=y—cy = y—ax=ci. (1.8)

Now taking last two fraction and by putting y — ax = ¢ in last fraction, we have

dy _ _ dz
a ~— ztcotep”

By integrating, we have
y/a =1log(z+cotcy) +ca. (1.9

By putting the value of ¢; = y — ax from equation (1.8), we have

y/a—log(z+cot(y —ax)) =2 (1.10)
From equations (1.8) and (1.10) the required solution is f(y —ax,y/a —log(z+ cot(y —ax))) =0
U
= Example 1.6 Solve the partial differential equation px(z —2y?) = (z — qy)(z — y* — 2x°). .

Solution The given equation can re-written as x(z — 2y?)p +y(z — y*> — 2x3)q = z(z — y* — 2x%).
The Lagrange’s auxiliary equations are

dx dy — dz
X(z=2%) T ¥y -20) T 2(z—yP 24

Taking last two fraction, we get

U

dz

EEE
By integrating, we have
logy =logz—logcy = c1y =z (1.11)

Now taking first two fraction and by putting z = ¢y in both fraction, we have
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dx dy

x(ey=2y2) = y(ery—y*-243)"

= y(c1y —y* —2x3)dx = x(c1y —2y*)dy = (c1y —y* —2x°)dx = x(c| — 2y)dy
(c1y—y* —2x)dx+x(2y —c1)dy = 0. (1.12)

which is of the form Mdx+ Ndy = 0. Here M = ¢y —y*> — 2x> and N = x(2y — ¢ ). Then oM /dy =
¢y —2y and dN/dx =2y — ¢;. Now we have

1 (oM ONY\ _ 1 o,
N (Ty n W) = x2y—a) X 2(c; —2y) =—=

which is function of x alone. Hence by usual rule, integrating factor will be e/ (-2/¥)dx — g=2logx — ;=2

Multiply the the equation (1.12) by integrating factor LF.= x~2, we have x 2(c1y — y* — 2x°)dx +
x~1(2y — ¢1)dy = 0, which must be exact differential equation. Hence its solution is

/{x’z(cw—yz—2x3)}dx+/x’1(2y—q) =0 (1.13)
(treating y as a constant) (terms free from x)
2 2 ()’2 —c1y) 2
(cly=y)x(=1/x) —x"=c) = ——= —x" =03, (1.14)
X

By putting the value of ¢; = z/y from equation (1.11) in equation (1.14), we have

2 _
(v - z) _2 — ¢y (1.15)

From equations (1.11) and (1.15) the required solution is f (f, 6= —xz) =0 O

X

Exercise

Solve the following PDE:

(1) p—2g=3x"sin(y+2x) Ans. f(x*sin(y+2x) —z,y+2x) =0
2) p—q=z/(x+y)  Ans. f(xylogz+ (ax/3y*)) =0

(3) (x* —y* —2%)p+2xyq = 2xz Ans. f((x* +y*+2%)/z,y/2) =0
4 zp—zg=x+y Ans. f(2x(x+y) —z*,x+y) =0

Type-3 (Multiplier Method)
» Example 1.7 Solve the partial differential equation (mz — ny)p + (nx —Iz)g = ly — mx. .

Solution The Lagrange’s auxiliary equations are

dx  dy  dz
mz—ny nx—Iz ly—mx’

Using multipliers /,m, n, each fraction becomes

ldx+ mdy + ndz _ ldx+mdy+ndz
I(mz —ny) +m(nx —Iz) +n(ly —mx) 0 )
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= ldx+ mdy+ndz = 0. By integrating we get
Ix+my+nz=cy.

Now, again using multipliers x,y, z, each fraction becomes

_ xdx +ydy + zdz _ xdx+ydy+zdz
x(mz —ny) +y(nx —Iz) + z(ly — mx) 0 ’

= xdx+ydy+ zdz = 0. By integrating we get

2 22
Ty T_a 2 22
2+2+2 2:>x+y+z c2.

From equations (1.16) and (1.17) the required solution is f(Ix 4 my 4 nz, x> +y> +z%) = 0,
= Example 1.8 Solve the partial differential equation z(x +y)p +z(x — y)g = x> +y*.

Solution The Lagrange’s auxiliary equations are

dx dy dz

Gty)  2x—y) 24y

Using multipliers x, —y, —z, each fraction becomes

xdx —ydy —zdz _ xdx —ydy—zdz
xz(xy) —yz(x—y) —z(x* +y?) 0 '

= xdx —ydy — zdz = 0. By integrating we get
2o P2—e.

Again, using multipliers y, x, —z, each fraction becomes

vdx+xdy—zdz _ ydx+xdy—zdz
ya(xty) Faz(r—y) =262 +2) 0 '

— ydx+xdy —zdz =0 = d(xy) —zdz = 0. By integrating we get
xy—22/2=cs.
From equations (1.18) and (1.19) the required solution is f (x> —y* —z%,xy —7%2/2) =0,

= Example 1.9 Solve the partial differential equation x(y* +z)p — y(x> +z2)q = z(x> — y?).

Solution The Lagrange’s auxiliary equations are

dx dy dz

x(y2+z)  —y(x24z)  z(x*—y?)
Using multipliers x,y, —1, each fraction becomes

B xdx+ydy —dz _ xdx+ydy—dz
22 +z2) =y (2 4) — 2 —y2) 0 '

(1.16)

(1.17)

g

(1.18)

(1.19)

0
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= xdx+ydy—dz = 0. By integrating we get

2 2
X y Cl 2 2
22 ¢ 2 Ty cTa

Again, using multipliers 1/x,1/y,1/z, each fraction becomes

~ (I/x)dx+(1/y)dy+(1/z)dz (l/x)dx+(1/y)dy+(1/z)dzl

2+ (2 +9+ (2 )
= (1/x)dx+ (1/y)dy+ (1/z)dz = 0. By integrating we get

logx+logy+logz =logc, = xyz=c».

From equations (1.20) and (1.21) the required solution is f (x2 +y? — 2z,xyz) =0,

Exercise

Solve the following PDE:

(1) (y—2)p+(z—x)g=x—y  Ans. flx+y+z,x2+y*+2%)=0

) (+z)p—(x+yz2)g+y*—x*=0  Ans. f(xy+z,x>+y*—z2) =0
(3) x(y—2)p+y(z—x)g=2z(x—y) Ans. f(x+y+z,xyz) =0

@) x(y* —)p—y(Z+x)g=z(>+y*)  Ans. f(*+y*+2%,x/yz) =0
(5) (y—z)p+(x+yz)g=x*+y*  Ans. f(x* —y*+2%xy—2) =0

Type-4

» Example 1.10 Solve the partial differential equation (y+z)p+ (z+x)g =x+y.

Solution The Lagrange’s auxiliary equations are
dx dy dz
y+z Tifx xt y
Using multipliers 1, —1,0, each fraction of (1.22) becomes
dx—dy d(x—y)
O+9) -G+ —(@—y)’
Again, using multipliers 0, 1, —1, each fraction of (1.22) becomes

dy—dz d(y—z)

(z4+x)—(x+y) —(—2)

Finally, using multipliers 1, 1, 1, each fraction of (1.22) becomes

dx+dy+dz dx+y+z)

y+z2)+(z+x)+(x+y) 2(x+y+2)
Equations (1.23, 1.24 and 1.25)
dix—y) dly—-z) dx+y+z)

—(x—y) —(-2) 2x+y+z)
Taking the first two fraction of (1.26), we get

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)

(1.25)

(1.26)
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dix—y) dly—z)

(x—y) (-2

By integrating, we get
(x—y) _

log(x—y) = log(y —z) +loge; — = (1.27)
(y—2)
Taking the last two fraction of (1.26), we get
diy—z) _dx+y+z) ,d—2)  dlx+y+z)
-(v—=2)  2(x+y+2) y—2)  (x+y+2)
By integrating, we get
2log(y—2) +log(x +y+z) =logey = (y—2)*(x+y+2) =c2. (1.28)
From equations (1.27) and (1.28) the required solution is f (Ex—y;’ (y—z)2(x+y+ z)> =0.
O roE
= Example 1.11 Solve the partial differential equation (x*> — yz)p + (y> — zx)q = 2> — xy. "

Solution The Lagrange’s auxiliary equations are

dx dy dz

— — 1.29
xX2—yz y*—zx zZ—xy (1.29)

Using multipliers 1, —1,0, each fraction of (1.29) becomes

dx—d d(x— d(x—
- §" ) b=y) (1.30)
(P —yz) = (P —2x) =y +z(x—y) (x—y)(x+y+2)

Again, using multipliers 0, 1, —1, each fraction of (1.29) becomes

dy —dz d(y—z) d(y—z)

= —

(P —z)— (2 —xy) Y —2+x(y—2) (y—2)(y+z+x)
Once again, using multipliers x, y, z, each fraction of (1.29) becomes

B xdx+ydy + zdz _ xdx+ydy+zdz

x(x* —yz) +y(y* —wx) +z2( —xy) P4y 42— 3xyz

(1.31)

xdx+ydy+zdz
=
(x+y+2)(x2+y*+22 —xy—yz—2zx)
Finally, using multipliers 1, 1, 1, each fraction of (1.29) becomes
dx+dy+dz

(22 4 y2 +22 —xy —yz — 2x)

Equations (1.30), (1.31), (1.32) and (1.33)
d(x—y) _ d(y—=z) B xdx+ydy+zdz

(x—y)(x+y+z) O—2)p+z+x)  (x+y+2)(2+y2+72—xy—yz—2zx)

dx+dy—+dz
- E—h Rl . (1.34)
(X2 4y>+722—xy—yz—2zx)

(1.32)

(1.33)

Taking the first two fraction of (1.34), we get
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dix—y) dly—z)

(x—y) (-2

By integrating, we get

(x—y)

(y—2)

Taking the last two fraction of (1.34), we get
xdx+ydy +zdz dx+dy+dz

(x+y+2)(2+y?+22—xy—yz—zx) (FP+y*+22—xy—yz—zx)

log(x—y) =log(y —z) +logec; = =cj. (1.35)

xdx+ydy+zdz

= dx+dy+d
(x+y+2) rrayTac

= xdx+ydy+zdz— (x+y+2z)d(x+y+2z) =0

By integrating, we get

x22+y22 222_(X+y2+Z)22022 = (F+y*+75) - (x+y+z)’ = (1.36)
From equations (1.35) and (1.36) the solution is f (Ex_y),(x2+y2+zz) - (x+y+z)2> =0
- y—2)
= Example 1.12 Solve the partial differential equation cos(x+y)p +sin(x+y)g = z. .

Solution The Lagrange’s auxiliary equations are

dx dy dz

— -2 1.37
cos(x+y) sin(x+y) z (50
Using multipliers 1, 1,0, each fraction of (1.37) becomes
dx+dy d(x+y)
= - = - . (1.38)
cos(x+y)+sin(x+y) cos(x+y)+sin(x+y)
Again, using multipliers 1,—1,0, each fraction of (1.37) becomes
dx—d d(x—
- dmdy ) (139)
cos(x+y) —sin(x+y) cos(x+y)—sin(x+y)
Equations (1.37), (1.38) and (1.39)
dz d(x+y) d(x—y)
az _ . - g (1.40)
z  cos(x+y)+sin(x+y) cos(x+y)—sin(x+y)
Taking the first two fraction of (1.40), we get
d d
= Ghe) (1.41)

z cos(x+y)+sin(x+y)

Let x+y =1 so that d(x+y) = dt. Then second fraction of the above equation can be written as
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dt B dt B dt
cost +sint ﬂ(\/licosH—%sint) V2 (sinz/4cost + cos 7w /4sint)
B dt
© V2(sin(t 4+ 1/4))

Thus from equation (1.41), we have
dz dt d
= - — 25 = cosec(t+m/4)dt
2 \/2(sin(t+m/4)) z

By integrating, we get

1 t
\fZlogz:logtani(t+7t/4)+logc1 = V2 =c|tan (5—&—%)
t
— zﬁcot(i—i—g) =c
= zﬁcot(x;)}—Fg) =cC t=Xx+y.
(1.42)
Taking the last two fraction of (1.40), we get
d(x—y) _ d(x+y)
cos(x+y)—sin(x+y) cos(x+y)+sin(x+y)
d(x—y) = SSHy) =sinbxty) o (1.43)

~ cos(x+y)+sin(x+y)

Let x+y =1 so that d(x+y) = dt. Then the above equation can be written as

cost — sint
dx—y)=———dt
(x=Y) cost + sint
By integrating, we get
sint 4 cost
x—y =log(sint 4 cost) —logc, — (sin# +cost) =Y = ¢V (sinr +cost) = ¢,
(&)
= e " V(sinr+cost) = ¢; = ¢ "V (sin(x+y) +cos(x+y)) = (1.44)

From equations (1.42) and (1.44) the required solution is

f <z‘/§cot (x;ty + g) ,e” Y (sin(x +y) +COS(X+Y))> =0.

Exercise
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Solve the following PDE:

(1) Pa=y)pt—xg=20d 1)) Ans [0 4y =0

2, 2 2
) (x* —y*—22)p+2xyq = 2xz Ans. f(%,w)zo
(

4 Z
3) (1+y)p+(1+x)g=z Ans. f(1+x)?>—(1+y)%,2+x+y)/z) =0
@) (P4 +y)p+ (P +y* —x2)g=z(x+y)  Ans. f(P+)*)/P,z—x+y) =0

B) prg=x+y+z Ans. f(x—y,e™*(2+x+y+2))=0

General method of solving partial differential equations of order one but of any
degree (non-linear)

Charpit’s Method

Working Rule: Let the given partial differential equation of first order and non-linear in p and q
bef(x,y,2,p,q) =0

Step-I. Transfer all the terms of the given equation to L.H.S. and denote the entire expression by f.
Step-I1. Write the Charpit’s auxiliary equations as follows:

dp dq dz dx dy dF

fit+pf fy"’CIfz _pfp_CIfq _fp _fq 0
af af af

Wherefx—g, fy—?y’ fp—ﬁa---
Step-I11. Put the value of f, fy, fp,... etc, in the Charpit’s auxiliary equation.
Step-IV. Choose two proper fraction from the above auxiliary equation so that we can integrate them
easily and find the value of p and q.
Step-V. Put the values of p and ¢g in dz = pdx+ gdy. By integrating this we get the complete integral
of the given equations.

= Example 1.13 Find the complete integral of z = px + qy + p* + ¢°. "
Solution Let f(x,y,z, p,q) = z— px+ qy + p> 4+ ¢*> = 0. The Charpit’s auxiliary equations are
d d d d d dF
P ___% W% L3 _ Y4 (1.45)
Ht+pf: fy+CIfz _pr_CIfq _fp _fq 0

Here fy=—-p,  fi=—¢, f:=1, fy=—x—-2pandfi=—-y—2q
Put all these values in equation (1.45), we have

dp dg dz dx dy dF

(=p)+p(1) (=@)+q(1) —p(=x—2p)—q(-y—2q) —(—x-2p) —(-y—29) O
The above equations reduces to

dp dq dz dx dy dF
G = — - (1.46)
0 0 px+2p)+qy+2q9) (+2p) (+29) O

The first fraction of (1.46) = dp = 0 so that p = a( where a is an arbitrary constant)

Similarly, second fraction of (1.46) =—> dg = 0 so that ¢ = b( where b is an arbitrary constant)
Putting the value of p = a and ¢ = b in the given equation z = px+qy+ p> +¢?, we get the required in-
tegral as z = ax+ by +a® + b°. U
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= Example 1.14 Find the complete integral of zpg = p+gq. =
Solution Let f(x,y,z,p,q) = zpq — p +q = 0. The Charpit’s auxiliary equations are

dp dq dz dx dy dF

fokpf htaf —ph—afy  —f ~fo O

Here f, =0, fy:07 f=pq, fp:Zq_landfq:Zp_l
Put all these values in equation (1.47), we have

dp dq dz dx dy dF

1.47)

(0)+p(pg)  (0)+q(pq) —plzg—1)—q(zp—1) —(zg—1) —(zp—1) 0

The above equations reduces to

d d d d
LA 24 (1.48)
pq pq p q
By integrating we get, log p = logg +1loga =—> p = agq. Put the value of p = aq in given equation
1 1 1
zpq = p +q, we get the value of ¢ = (1+a) and p = ( —I—a)' Putting the value of p = (1+a) and
Z
1
q= ﬂ in the equation dz = px + gy, we get
az
1 1 1
dz= ( +a)dx—|- ( +a)dy = zdz= (1+a)dx+ ( +a)dy.
Z az a
By integrating we get the required integral as
2
Z l1+4+a 1+4+a
5= (14+a)x+ ( & )y—i—b — 72 =2|(1+a)x+ ( a )y—i—b .
Exercise
Solve the following PDE:
2
(1) px+qy=pg Ans. azzm—kb

2

Q) px+q¢*y=z Ans. \/(1+a)z=ax+,/y+b

(3) 2z+p?+qy+2y*=0 Ans. 2y’ z+y*(x—a)> +y* =b
4) 2% = pgxy Ans. z = x4/

(5) g = (z+ px)? Ans. xz =2/ax+ay+b

Special Method to solve non-linear first order partial differential equations

Standard Form-1:(When PDE contains only p and g) Let the given equation which contains only
pandgqis f(p,q) =0.

Step-1: Put the value p = a and g = b in the equation dz = pdx + gdy.

Step-I1: By integrating the equation dz = adx+ bdy we get z = ax+ by + ¢, where c is an integrating
constant.

Step-III: Now put the value of a = F(b) or b = F(a) from given equation f(a,b) =0 in z =
ax+by+c

Step-IV: The required answer will be either z = ax+ F(a)y+corz=F(b)x+by+c¢
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= Example 1.15 Solve p? +¢> = m? .

Solution: Given PDE is
p+q=m (1.49)

Which is of the form f(p,q) = 0. Therefore its solution can be found by putting p =a and g = b in
the equation

dz=pdx+qdy ie dz=adx+bdy (1.50)
By integrating we get

z=ax+by+c (1.51)
Also from equation (1.49), we have

A+ =m’ = a= \/m
Thus the required solution will be

7= \/ﬂﬁx +by+c

= Example 1.16 Find the solution of z2p2y 4 6zpxy + 2qu2 12 4x2y =0 -

Solution: The given equation can be written as

2 0z 2 dz dz 2 2
7z EN y+6z % xy+2z a—y xX“4+4xy=0 (1.52)
By dividing x%y, we get
297\’ 20z 70z
(i5:) +o(i5) 2(5)+4=0 (19

Let xdx = dX ydy = dY and zdz = dZ so that x*/2 = X y?/2 =Y and 7?/2 = Z Now
equation (1.53) becomes

P24+ 6P+20+4=0 (1.54)
z z
where P = gX’ 0= gY

Which is of the form f(P,Q) = 0. Therefore its solution can be found by putting P =a and Q = b in
the equation

dZ =PdX+QdY ie. dZ=adX+bdY (1.55)
By integrating we get

Z=aX+bY +c (1.56)
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Also from equation (1.54), we have

a?+6a—4

A +6a+2b+4=0 = b= 5

Thus the solution will be

21 6a—4
a”+ 6a %

Z=aX
aX + 5

+c

By putting the value X = x?/2, Y =y?/2 and Z = 7?/2, we get the required solution as

a>+6a—4 ,

2 2 2 2
6_4
< a“+6a y .

:a£+77+c = Z=ax’+
2 2 2 2

Exercise

Solve the following PDE:

) Vp+yva=1 Ans. z=ax+ (1 —+/a)y+c

(2) pg=1 Ans. z=ax+ (1/a)y+c

) *p*+y*¢* =z Ans. 2,/z =alogx+ /(1 —d’logy+ ¢ Hint: Take (1/x)dx = dX
(1/y)dy =dY and (1//z)dz =dZ

4) 7% = pgxy Ans. z = x%y'/C Hint: Take (1/x)dx=dX (1/y)dy =dY and (1/z)dz =
az

Special Method to solve non-linear first order partial differential equations

Standard Form-I1:(When PDE contains only p, g and z) Let the given equation which contains

only p, g and zis f(p,q,2) = 0.
Step-1: Let u = x+ ay where a is any arbitrary constant.

d d
Step-II: Replace p and g by d—z and ad—z respectively. Solve the resulting ordinary differential
u

equation of first order by usual methods
Step-III: Replace u by x+ ay in the solution obtained in step-11.

= Example 1.17 Solve p* +¢°> —3pgz .
Solution: Given PDE is

P44 —3pgz (1.57)

Which is of the form f(p,q,z) = 0. Let u = x+ ay, where a is an arbitrary constant. Therefore its

d
solution can be found by putting p = d—z and g = ad—Z in the equation
u u

dz\’ dz\’ dz dz
3, 3 az 4y 5 (% b
p’+q —3pgz = <du) + (adu) 3<du> <adu>z (1.58)
d d
— (1+a) 5 =3az — (1+a)% = 3adu (1.59)
z
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By integrating we get
(1+a*)logz =3au+b = logz —logh = au (1.60)
Thus the required solution is
= (1+a’)logz=3a(x+ay)+b

= Example 1.18 Solve p?> = gz .
Solution: Given PDE is

P’ =qz (1.61)

Which is of the form f(p,q,z) = 0. Let u = x + ay, where a is an arbitrary constant. Therefore its

d d
solution can be found by putting p = d—z and g = ad—z in the equation
u u

dz\* d d d
pzzqz: ) P a—Z z:>—zzaz:>—zzadu (1.62)
du du du Z

By integrating we get

logz = au+logh = logz—logh=au = %:e““ (1.63)

Thus the required solution is

2= beali+a)

Exercise

Solve the following PDE:

() 9(p*’z+4*) =4 Ans. (x+ay+b)? = (z+a*)?

Q) p(1+¢*) =q(z— ) Ans. (x+ay+b)? =4{a(z—a)—1}*
Q) ¢ =22p*(1-p?) Ans. (x+ay+b)? = (2 —d?)

@) 2(p*P+q¢H) =1 Ans. 9(x+ay+b)? = (2 +a?)?

(5) 4(1+72%) =9z*pq Ans. (x+ay+b)? =a(1+7%)

Special Method to solve non-linear first order partial differential equations

Standard Form-III:(When PDE contains only p, ¢, x and y) Let the given equation which con-
tains only p, ¢, x and y is f(p,q,x,y) = 0.

Step-I: Separate x, p one side and y, g one side, say fi(x,p) = f2(y,9).

Step-11: Take fi(x, p) = f2(v,q) = a(constant). Now consider f(x,p) = a(constant) and f>(y,q) =
a(constant)

Step-I11: Let fi(x, p) = a solve it for p, say p = Fi(x,a). Similarly take f>(y,q) = a and solve it for
g, say q = F2(y,a).

Step-IV: Put the value of p = F|(x,a) and ¢ = F>(y,a) in the equation dz = pdx + qdy.

Step-V: The required solution will be z = [ Fi(x,a)dx+ [ F>(y,a)dy+b
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» Example 1.19 Find the integral of x(1+y)p = y(1+x)g .

Solution: Separating p and x from ¢ and y, the given equation can be written as

xXpYq
(1+x)  (1+y) (1.64)

: . . X
Equating each side to an arbitrary constant a, we get P gand Y —g

(1+x) (I+y)
1+x 1+y . .
sothat p=a | —— ) and ¢ = a | — |. Putting the values of p and g in dz = pdx + qdy, we get
X Yy

1 1
dzza<+x> dx+a(+y> dy (1.65)
x y
By integrating (1.65), we get the required solution as
z=a(logx+x)+a(logy+y)+b — z=a(logxy+x+y)+b. (1.66)

m Example 1.20 Find the integral of py +gx+ pg =0 "
Solution: Given equation can be written as py + g(x+ p) = 0. Separating p and x from ¢ and y,
the given equation can be written as

P _ 4 (1.67)

(p+x) ¥y

A 9 _
=agand —==a
(p+x) y

so that p = <1xa) and ¢ = —ay. Putting the values of p and g in dz = pdx+ qdy, we get
a

Equating each side to an arbitrary constant a, we get

dz = (“) xdx — aydy (1.68)

l1—a

By integrating (1.68), we get the required solution as

a x? v b a
- ol 2= (-2 ) —ay® +b. 1.
(1—a>2 a2—|—2:> Z <l—a>x ay"+b (1.69)
= Example 1.21 Find the integral of z(p> —¢?) =x—y .

Solution: Given equation can be written as (,/z0z/9x)* — (1/20z/dy)? =x—y. Let \/zdz = dZ
so that (2/3)z3/? = Z. Thus the given equation becomes

2 2

2z 0z
where P = E and Q = FIS Separating P and x from Q and y, we get
X y

PPox=0*—y (1.71)
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Equating each side to an arbitrary constant a, we get P> —x =g and Q> —y=a
so that P = v/a+x and Q = /a+y. Putting the values of P and Q in Pdx+ Qdy, we get

dZ = \/a+xdx++/a+ ydy (1.72)
By integrating (1.72), we get the required solution as
Z=(2/3)(x+a)* >+ (2/3)(y+a)**+(2/3)b

(2/3)(2)* = (2/3)(x+a)* /2 +(2/3) (y+a)* + (2/3)b

(Y% = (x+a)*? +(y+a)**+b (1.73)
Exercise

Solve the following PDE:

(1) yp =2yx+logg Ans. 7 = (ax+x*)+(1/a)e® +b
(2) p+q—2px—2qy+1=0 Ans. z = —(a/2)log(1 —2x)+(1/2)(a+1)log(2y+1)+b
3) p]/3 - q1/3 =3x—3y Ans. 3x3 — 3ax? +a2x+2y4 —4ay3 +3a2y2 —a3y+b
@ P+ =2 (P +y?)  Ans.z=(1/3)(¢ +a?) P+ (37 —a?) 2+ b
19z\* [ 1 a7\
5) PP +q* = (x*+y*)z Hint: <> +< = x4y
5) p*+q =" +y) 7 ox iy y

Ans. 4(2)'/% = x(x> + a®)V2 + @ sinh ! (x/a) + y(y* — a®)'/? = a®cosh™! (y/a) + b
Special Method to solve non-linear first order partial differential equations

Standard Form-IV:(Clairaut’s Form) Let the given equation is Clairaut’s Form i.e. z = px+¢qy+

f(pq).

Step-I: Put the value p = a and ¢ = b in given equation.
Step-II: The required solution will be z = ax + by + f(ab)

m Example 1.22 Find the integral of z = px+ gy + pgq "
Solution: The given equation is Clairaut’s form z = px+ gy + f(pg). Hence the required
solution can be found by putting p = a and ¢ = b in given equation i.e. the solution is

z=ax+by+ab. (1.74)

= Example 1.23 Find the integral of (px+qy —z)> = 1+ p*> +¢* "

Solution: The given equation can be written as is z = px+gx=+/1+ p% + g% which is Clairaut’s
form z = px+ gy + f(pq). Hence the required solution can be found by putting p = a and g = b in
given equation i.e. the solution is

z=ax+bxt/14+a>+b2. (1.75)

Exercise
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Solve the following PDE:

1
(D (p+q)(z—px—qy) =1 Ans.zzax—i-by—l-m

a* +b*
ab

2) paz=p*(xq+p*)+¢*Op+q°)  Ans.z=ax+by+

1+ b7
() 2q(z—px—qy) = 1+4* Ans. z=ax+by+

1+ab

(4) 2log(z—px—qy) =1+pq Ans. z=ax+by+e 2 .
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PARTIAL DIFFERENTIAL EQUATIONS OF HIGHER ORDER

SOLUTION TO HOMOGENEOUS AND NON-HOMOGENEOUS LINEAR PARTIAL DIFFER-
ENTIAL EQUATIONS SECOND AND HIGHER ORDER

Definition 1.2.1 — (Linear Homogeneous Partial Differential Equation of Order n). An equa-
tion of the type
2"z 2"z 2"z 2"z

aoﬁ ta ox"~ 19y Ta 3xn—2ay2+7 e ’a"Ty” =0(x,y), (1.76)

where ag,ay,...,a, are constants and ¢ (x,y) is any function of x and y, is called a homogeneous
linear partial differential equation of order n with constant coefficients. It is called homogeneous
because all the terms contain derivatives of the same order.

Notations: We use the following notations:

d d ,
> =D and a—y =D
Then equation (1.76) can be written as
apD"z4a; D" 'D'z+ a; D" D%+, . .., +a, D"z = ¢(x,y)
or
(aoD" + a1 D" 'D' +ayD" 2D+, .. +a,D")z = ¢(x,y)
or
F(D,D")z=¢(x.y),
where F(D,D') = (agD" +a;D""'D' + a;D" 2D+, ..., +a,D™").
Working Rule to find Complementary Functions:
Step-I: Put the given equation in the standard form
(aoD" +a;D"'D' +a;D" 2D+, ... +a,D'")z = ¢(x,y) (1.77)

Step-II: Replacing D by m and D’ by 1 in the equation (1.77), we obtain auxiliary equation (A.E.)
as

agm" +aym" ' + am" 2+, ... +a, =0 (1.78)

Step-III: Solve equation (1.78) for m.Then following cases will be arises:
Case-1: Let m = m;,mo, ...,m, are different roots, then complementary function (C.F.) will be

C.F. = fi(y+mix) 4 fa(y+max) 4 ... + fu(y +mpx),

where f1, f2, ..., f, are arbitrary functions.
Case-2: Let r roots m = m; = my = ... = m,, (r < n) are equal, then complementary function (C.F.)
will be
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C.F. = fi(y+mx) +xfo(y+mx) + 2 f3(y+mx) + ..+ X fr(y+x).

Case-3: Corresponding to a non-repeated factor D, the C.F. is taken as fj(y).
Case-4: Corresponding to a repeated factor D", the C.F. is taken as

[0 +xH0) +x2H0) + -+ ().

Case-5: Corresponding to a non-repeated factor D', the C.F. is taken as f(x).
Case-6: Corresponding to a repeated factor D", the C.F. is taken as

[1() +3Hx) + Y2 f5(x) + oy ().

Notations: We use the following notations

dz dz 0?7 0’z . 9?7
= —_— = —r5r=——.5§= —- = —.
P=ox1 dy’  dx?  dxdy  0dy?
J3 J3 J3
2L 7 2% 1622
dx3  dxdy? 9y’
Solution: The given partial differential equation can be written as

= Example 1.24 Solve 0 n

(D?—71DD"* +6D"?)z =0.
By replacing D by m and D’ by 1, the auxiliary equation is
m* —Tm+6=0 = (m—1)(m—-2)(m+3)=0.
Hence the roots are m = 1,2, —3, which are different. Therefore general solution will be
2= fiy+x)+ f(y+2x)+ f3(y —3x),
where f1, f», f3 are arbitrary functions.
= Example 1.25 Solve (D* —6D*D’' + 11DD> —6D")z =0 .
Solution: By replacing D by m and D’ by 1, the auxiliary equation is
m?—6m*+11lm—6=0 = (m—1)(m—2)(m—3) =0.
Hence the roots are m = 1,2,3, which are different. Therefore general solution will be
2= fiy+x)+ fa(y+2x) + f3(y +3x),
where f1, f2, f3 are arbitrary functions.

m Example 1.26 Solve the partial differential equation 25r —40s+ 16t =0 "

Solution: Given equation can be written as
(25D% —40DD’' +16D'%)z = 0.
By replacing D by m and D’ by 1, the auxiliary equation is
25m* —40m+16=0 = (5m—4)*=0.

Hence the roots are m = 4/5,4/5, which are repeated. Therefore general solution will be
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= fily+ %x) +xfa(y+ %x)

or
2= fi(5y+4x) +xf2(5y+4x)

where f1, f», f3 are arbitrary functions.
= Example 1.27 Solve the partial differential equation D>*D’?(D+D')z =0 .

Solution: The solution corresponding to the factor D? is fi(y) +xfa(y)
The solution corresponding to the factor D' is f3(x) +yf4(x)
The solution corresponding to the factor (D+D’) is f5(y — x)
Hence the general solution will be

2= i) +x2(0) + f3(x) +yfa(x) + f5(y — x).
Exercise
Solve the following PDE:

(1) (4D*+12DD' +9D?)z=0

(2) (D3 —4D*D' +4DD"?)z=0

(3) (D*—2D3D' +2DD"” —D"*)z=0
@) r=ad’t

(5) 2r+5s+2t=0

Short Method to find the Particular Integral

Short Method-I (When right hand side function is of the form ¢(ax+ by) i.e. F(D,D') =
olax -+ by))

Let F(D,D") = ¢ (ax+ by) be homogeneous function of D and D’ of order n. Then the particular
integral is defined as

Ld)(\/) = ;ff...f(p(v)dvdv...dv,

F(D,D') F(a,b)
where v = ax+ by and F(a,b) # 0.
Exceptional Case:When F(a,b) = 0. Let F(D,D’) = ¢ (ax+ by) be homogeneous function of D
and D’ of order n. Then the particular integral is defined as

x"
GD—apy ) = 0l by)
» Example 1.28 Solve (D?+3DD' +2D?)z=x+y .
Solution: The solution of the auxiliary equation is m? + 3m +2 = 0, which gives m = —1,—2.

therefore it’s complementary function (C.F.) is

C.F.= fi(y —x) + f2(y — 2x), where fi, f> are arbitrary function.
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Now, Particular Integral (P.I.) will be

1 1
Pl.=——— by) =
Fp.D) @by D300 12072 )
1
= dvd
124311+2.12 //V e
- 1
B 66
1 3
Pl. = —
36Ty
Therefore the required general solution is z = C.F.+ Pl i.e.
1
2= fily—x)+ fo(y —2x) + %(JC—I-Y)3
= Example 1.29 Solve (D?> +2DD’ + D?)z = (>+3) .
Solution: The solution of the auxiliary equation is m? +2m + 1 = 0, which gives m = —1, —1.

therefore it’s complementary function (C.F.) is
C.F.= fi(y—x)+xf2(y —x), where f1, f> are arbitrary function.
Now, Particular Integral (P.I.) will be

= F(DI,D’)MMJF by) = Dy 2D1D’ e
> 22+2;3+32 //evdvdv

_ Ly

Pl = %e(2x+3y)

Therefore the required general solution is z = C.F. 4 P.l i.e.

1
2= fily—x)+xfaly—x)+ 58(2”3”-

» Example 1.30 Solve r —2s+t = sin(2x+ 3y) .

Solution: Given equation can be written as (D? —2DD’ + D'?)z = sin(2x + 3y). Therefore the

auxiliary equation is m> — 2m + 1 = 0, which gives m = 1, 1. therefore it’s complementary function
(CE)is

C.F.= fi(y+x)+xf2(y+x), where fi, f> are arbitrary function.

Now, Particular Integral (P.I.) will be

1
D?>—2DD’' + D"

1 )
= Y 22313 //sm(v)dvdv

1
= T(—sinv)

1

sin(2x+ 3y)

Pl. = —sin(2x+ 3y)
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Therefore the required general solution is z = C.F.+ P.l i.e.
z= fily+x)+xfo(y+x) —sin(2x+ 3y).

» Example 1.31 Solve 4r —4s+t = 16log(x+2y) .

Solution: Given equation can be written as (4D? — 4DD’ 4+ D'?)z = 16log(x 4 2y). Therefore
the auxiliary equation is 4m?> —4m+1=0 = (2m—1)> =0, which gives m = 1/2,1/2. therefore
it’s complementary function (C.F.) is

CF = fily+ 30+ eyt 30) = = fi(2y+2) +xfa(2y +),

where f1, f> are arbitrary function.
Now, Particular Integral (P.I.) will be

1 1
Pl.= ——— by) = 161 2
Fo.D) e by) D2 —apDy 1 p2 oloe+2))
1
= 16——-1 2
2
PI. = 2x% log(x +2y)

Therefore the required general solution is z = C.F. + P.l.i.e.
2= fi(2y+x) +xf(2y+x) + 2x* log(x +2y).
Exercise

Solve the following PDE:

(1) (D*+3DD' +2D?)z=2x+3y  Ans.z= fi(y—x) +xfo(y —2x) + 1/240(2x + 3y)*

(2) (D3 —6D?D' +11DD"? — 6D"*)z = (5x + 6y) Ans. 2= fi(y+x)+ fHr(y+2x) + f3(y +
3x) — (1/91)el5x 4 6y)

(3) (D3 —4D*D' +4DD"?)z =4sin(2x+y) Ans. z= f1(y)+ fo(y+2x) +xf3(y+2x) — x> cos(2x+

y)
(4) (D* —=3DD"? +2D"®)z = \/(x—2y) Ans. z= fi(y+x) +xf(y+x) + fr(y+2x) —
h\7/2
2835 ) i
(5) (D—3D")*(D+3D')z =¥ Ans. 2= f1(y+3x) +xfa(y+3x) + f3(y — 3x) + o 3.

12

Short Method to find the Particular Integral

Short Method-II (When right hand side function is of the form ¢ (x"y") i.e. F(D,D’') = ¢ (x"y")),
where m and n are either integer or rational number.

Let F(D,D’) = ¢(x™y") be homogeneous function of D and D’ of order n. Then the particular
integral is defined as



30 Chapter 1. Partial Differential Equations

1

m(p(x’"y”),

1
Then particular integral evaluated by expanding the symbolic function m in an infinite series
of ascending power of D or D'.

/

1 D
Remark-1: If n < m, then ———— should be expanded in powers of D whereas If m < n, then

F(D,D')
1
——— should be expanded in powers of —.
F(D,D) D
-1 —1)(n—2
Remark-2: Binomial expansion (1+x)" =1 +nx+ n(nz‘ )x2 + n(n 3)'(’1 )x3 +..

= Example 1.32 Solve (D? —a*D"?)z = x. .

2

Solution: The auxiliary equation is m? — a®> = 0, which gives m = —a,+a. Therefore it’s

complementary function (C.F.) is
C.F. = fi(y—ax) + fo(y+ax), where fi, f, are arbitrary function.
Now, Particular Integral (P.I.) will be

1 mony 1
PJ‘:WWXY)—

1 a* ” a* 14
1
= D2 (x)
3
X
Pl. = —.
6

Therefore the required general solution is z = C.F. 4+ P.l i.e.
3
2= fily—ax) + fo(y+ax) + .

= Example 1.33 Solve (D? — D"?)z = xy3. .
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Solution: The auxiliary equation is m> — 1 = 0, which gives m = 1, @, ®*, where ® and w? are
cube root of unity. Therefore it’s complementary function (C.F.) is

C.F.= fi(y+x)+ fo(y + ox) + f3(y + ®°x), where f1, f», f5 are arbitrary function.
Now, Particular Integral (P.I.) will be

1 1 33

Pl = F(D,D,)(b(xmy") = 5 (7))

1 D/3 -1
- 5 (55)] &
1 D/3 D/3 2 D/3 3 33
1+ (1)3> + <D3> b <D3> +ot | (7))

= % [1 + <ll);) + (gj) + (gj) +...+] (y?)

D3

.
Y120 " 10080°

Pl =

Therefore the required general solution is z = C.F. 4+ P.l i.e.

) x6y3 x9
2= fily+2) + fo(y+0x) + f3(y+@°x) + 55+ {006
Exercise

Solve the following PDE:

(1) (D> —6DD' +9D?)z = 12x*> +36xy  Ans. z= f1(y+3x) +xf>(y +3x) + 10x* + 623y
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5
(2) (D*>—2DD'+D"?)z =" +x° Ans. 7= fi(y+x) +xfr(y+x) +elx+2y) + >

20
(3) (D3 —71DD™? —6D")z = x* +xy* +y°
Short Method to find the Particular Integral

Short Method-III (General Method).
Let F(D,D’) = ¢(x,y) be homogeneous function of D and D’ of order n. The particular integral is
defined as
o)
F(D,D) "
Let the particular integral can be written as
1
(D—mD')(D—myD")(D—m3D')...(D—m,D")

¢ (x,),

The we use one of the following formula

(D_’lnlD/)(j)(x,y) = [ ¢(x,c—mx)dx, where ¢ = y+ mx.
or
1
mq)(x,y) = [ ¢(x,c —mx)dx, where ¢ =y — mx.
= Example 1.34 Solve g)zc —|—3}Z} = sinx. n
Solution: The auxiliary equation is m + 1 = 0, which gives m = —1. Therefore it’s complementary

function (C.F.) is
C.F. = fi(y —x), where fj is arbitrary function.

Now, Particular Integral (P.I.) will be

1 1
Pl.=—— = ——— i
= /{sinx}dx,
Pl. = —COSX

Therefore the required general solution is z = C.F. + Pl .i.e.
z=fi(y —x) —cosx

= Example 1.35 Solve (D?> — DD’ —2D"?)z = (y—1)é". .

Solution: The auxiliary equation is m?

complementary function (C.F.) is

—m —2 =0, which gives m = —1,2. Therefore it’s

C.F.= fi(y —x) + f2(y+2x), where fi, f> are arbitrary function.



1.2 PARTIAL DIFFERENTIAL EQUATIONS OF HIGHER ORDER 33
Now, Particular Integral (P.I.) will be
Pl = o 0(ry) = S = e
T Fo,p)" YT (D+D)D—2D)" " ¢
B 1 1 (y— et
- DO+DY\(D—20)Y ¢
1 X
= (D_'_D/)/{(C—Zx—l)e }dx,
c=y+2x
1
= —_— —2x—1)e" — [ (=2)e"
(D—i—D’){(C x—1)e /( )e dx}
1
= —{(c—2x—1)e" +2¢"
DD {(c—=2x—1)e" +2¢*}
1
= —{(c—2x+1)e"
Gip) (=241
1
— —_ 2x—2x+1)e"
(D+D’){(y+ x—2x+1)e'}
Se=y+2x
1
— N—— 1)e*
Q2 /(c’+x—|— 1)e*dx
s =y—x
PIl. = (c’—l—x—l—l)ex—/(l.e")dx:(c’—i—x—i—l)e"—e}‘:yex
sd=y—x
Therefore the required general solution is z = C.F.+ P.l i.e.
2= fily—x) + f2(y +2x) + ye".
= Example 1.36 Solve (D?> — DD’ —2D"?)z = (2x> + xy — y*) sinxy — cos xy. .
Solution: The auxiliary equation is m? —m — 2 = 0, which gives m = —1,2. Therefore it’s

complementary function (C.F.) is

C.F.= fi(y —x) + f2(y+2x), where fi, f> are arbitrary function.
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Now, Particular Integral (P.I.) will be

1 1 ‘
Pl. = W‘P(M)’) = (D — 2D/)<D +D/) {(2)(72 +xy _yZ) sinxy — COS)Cy}
l .
B (D-2D')(D+D) {(2x=y)(x+y)sinxy - cosxy}
1
= (D_zD,)/{Qxx )(x+x+c) sinx(x + ) — cosx(x +c) } dx,
c=y—x
1
= (D_ZD,)/{(X—C)(Z)H—C) sin(x* + cx) — cos(x* +cx) } dx
1
= (D—2D) {—(x —c)cos(x* +ex) + /cos(x2 +cx)dx — /cos(x2 + cx)dx}
1
- D-2D) {(y — 2x) cosxy}
Se=y—x
= / (¢ —2x —2x) cosx(c’ —2x)dx
s =y+2x
- /(c' — 4x) cos(xc’ — 2x%)dx
— Let xd —2x*=t so that (c’ —4x)dx = dt
Pl = sin(c/x — 2x%) = sinxy.

Therefore the required general solution is z = C.F. + P.l.i.e.
2= fi(y —x) + f2(y +2x) + sinxy.
Exercise

Solve the following PDE:

4
(1) (D*>—4D"?)z= y%c - é Ans. z = fi(y+2x) + fo(y — 2x) +-xlogy + ylogx + 3x
(2) r+s—6r =ysinx Ans. z = fi(y+2x) + fo(y — 3x) — ysinx — cosx
(3) (D*>+2DD' 4+ D)z =2cosy—xsiny Ans. z = fi(y —x) +xf>(y —x) +xsiny
(4) r—t=tan®xtany—tanxtan’y [AKU2019] Ans. z= fi(y—x)+xfa(y+x)+1/2tanytanx.
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Non-Homogeneous Linear Partial Differential Equations with Constants Coefficients

Definition 1.2.2 A linear partial differential equations with constant coefficients, which are not
homogeneous are called Non-homogeneous.

3 2
= Example 1.37 2 g = 3§2+§ +2=x+2y .
%z 0z
= Example 1.38 P + % 4z = sin(x + 2y) .

Definition 1.2.3 A linear differential operator F (D, D’) is known as reducible, if it can be written
as the product of linear factors of the form aD + bD’ + ¢, where a, b and c¢ are constants. F(D,D’)
is known as irreducible, if it is not reducible.

= Example 1.39 D? — D" is reducible because it can be written as a linear factor (D> — D'?) =

(D—-D')(D+D") "
= Example 1.40 D3D’ — DD" is reducible because it can be written as a linear factor D3D’ — DD’? =
DD'(D—-D')(D+D') "
= Example 1.41 D? — D3 is irreducible because it can not be written as a linear factor. ]

Working rule for finding C.F. of reducible non-homogeneous linear partial differential
equations with constants coefficients.

Let the given reducible non-homogeneous linear partial differential equations with constants coeffi-
cients be F(D,D")z = ¢(x,y)

Step-I: Factorize F (D, D’) into linear factors.

Step-II: Corresponding to each non-repeated factor (bD —aD’ — c¢), the part of complementary
function is taken as e(“/?) f| (by + ax), if b # 0.

Step-III: Corresponding to repeated factor (bD —aD’ — ¢)", the part of complementary function is
taken as e(¢*/?) [f1(by + ax) + xf>(by + ax) +x* f3(by + ax) + ... +x(’_1)fr(by+ax)], if b # 0.
Step-IV: Corresponding to each non-repeated factor (bD — aD’ — ¢), the part of complementary
function is taken as e_("y/“)f —1 (by+ax),if a # 0.

Step-V: Corresponding to repeated factor (bD —aD’' — ¢)", the part of complementary function
is taken as e~ (©/9) [fi(by+ax) +yf2(by +ax) +y* f3(by +ax) + ... +y =1 £ (by + ax)], if a # 0,
f1, /2, f3, ..., fr are arbitrary functions.

= Example 1.42 Solve the PDE (D> —D? 4D —D')z = 0. .

Solution: The given PDE (D? — D2 + D — D')z = 0 is reducible because it can be written as a
linear factor

(D-D)D+D)+D—-D]z=0 = (D—D')(D+D'+1)z=0.

By comparing (D — D') with (bD —aD’ —c), we get b =1, a =1 and ¢ = 0. Now part of comple-
mentary function (C.F.) corresponding to the factor (D — D) is

O f(1y+1x) = fily+x).

Again by comparing (D+ D'+ 1) with (bD —aD' —c), we get b =1,a= —1 and ¢ = —1. Now part
of complementary function (C.F.) corresponding to the factor (D+ D'+ 1) is
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DA (Ly+(—1).x) = e ¥ fo(y —x).
Hence the required solution is

2= fily+x)+e " faly—x),
where f and f; are arbitrary function.
» Example 1.43 Solve the PDE r+2s+t+2p+2g+2z=0. "

Solution: The given PDE can be written as (D* +2DD' + D'2+ 2D + 2D’ + 1)z = 0, which is
reducible because it can be written as a linear factor

[(D+D)?42D+2D' +1)z=0 = [(D+D')>*+2(D+D') +1]z=0.
[(D+D' +1)?*z=0.

By comparing (D + D'+ 1) with (bD —aD’' —c¢), we get b =1, a = —1 and ¢ = —1. Now part of
complementary function (C.F.) corresponding to the factor (D + D’ +1)? is
DAL fi(Ly — L) +xfo(Ly— L)} = e {fi(y—x) +xfa(y—2)}.

Hence the required solution is

2= {fily—x)+x(y—x)},
where f| and f, are arbitrary function.
= Example 1.44 Solve the PDE (3D —5)(7D' +2)DD' (2D +3D' +5)z = 0. "

Solution: The given PDE is in a linear factor. Hence the required solution is
2= P fi(3y) +e” P H(Tx) 4 ) + falx) +e3 f5(2y = 3),
where f1, f2, f3, fa and fs5 are arbitrary function.
Exercise

Solve the following PDE:

(1) (D>*~DD'+D' —1)z=0 Ans. 2= fi(y) +e o (y+x)

Q) s+p—g—2z=0 Ans. ¢ fi(y) + eV fa(x)

(3) (D*—DD' —2D? +2D+2D")z=0Ans. 7= fi(y —x) + e Zfo(y +2x)
4) (D*-D?4+D—-D')z=0 Ans. 2= fi(y+x)+e  fo(y—x)

(5) (DD'+aD+bD' +ab)z=0  Ans.z=e > fi(y)+e ¥ f(x)

Working rule for finding C.F. of irreducible non-homogeneous linear partial differential
equations with constants coefficients.

Let the given irreducible non-homogeneous linear partial differential equations with constants
coefficients be F(D,D")z = ¢(x,y)

Step-I: If necessary Factorize F(D,D’) in the form Fy(D,D')F>»(D,D"), where F; (D,D’) consists of
product of linear factors in D, D’ and F»(D,D’) consists of product of irreducible factors in D,D’.
Step-II: Write the part of C.F. of linear factors Fy (D, D’) as usual method

Step-III: Write the part of C.F. of irreducible factors F»>(D,D’) by taking a trial solution
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C.F. =Y Aeh,

where A, h and k are arbitrary constants such that F(h,k) =0
Step-IV: Adding the part of C.F. of reducible factors F;(D,D’), obtained in Step-II and part of C.F.
of irreducible factors F>(D,D’), obtained in Step-III.

» Example 1.45 Solve the PDE (D —D'?)z = 0. .

Solution: Here D — D'? is not a linear factors in D and D'. Let the trial solution of given equation
is

7 =Y Aehvthy
Then Dz = Ahe™ X and D’z = Ak?>e™ X Putting these values in the given equation, we get
Ahe™ R — AR2P R = 0 = A(h—k?)e™ R =0
h—k*=0 = h=¥k.
Replacing / by k2, the most general solution of the given equation is
7=YA ek2x+ky’

where A and k are arbitrary constant.
= Example 1.46 Solve the PDE (D —2D' — 1)(D —2D"* — 1)z = 0. .

Solution: Here (D —2D" — 1) is a linear factors in D and D’. Therefore its complementary
function (C.E.) is €* f1(y + 2x), where f} is an arbitrary function. To find the complementary function
(C.F.) corresponding factor (D —2D'> — 1)z. Let the trial solution of this factor is

7= ZAeh)thy
Then Dz = Ahe/™ % and D"’z = Ak*e"™+%, Putting these values in the factor (D —2D'> — 1)z, we get
Ahe™ R AR Y AR = 0 = A(h—2k* — 1) =0
h=2k*—1=0 = h=2k*+1.
Replacing 4 by 2k* + 1, the complementary function (C.F.) corresponding factor (D —2D'> — 1)z is
C.F = ZAe(kZH)”ky . Now the required general solution of the given equation is
2= fi(y+20) + LAel T,
where A and k are arbitrary constant.

= Example 1.47 Solve the PDE (2D* —3D?D’' + D)z = 0. .

Solution: Given equation can be written as (2D?> — D')(D? — D)z = 0. To find the complemen-
tary function (C.F.) corresponding factor (D> — D')z. Let the trial solution of this factor is

7= ZAethrky
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Then D?*z = Ah?e™ % and D'z = Ake/* %, Putting these values in the factor (D> — D')z, we get

AhZehx+ky _Akethrky =0 — A(l’lz _ k)ehx+ky =0
W—k=0 = k=h%

Replacing k by 42, the complementary function (C.F.) corresponding factor (D> — D)z is C.F. =
ZAehx-‘rhzy.

Again to find the complementary function (C.F.) corresponding factor (2D* — D')z. Let the trial
solution of this factor is

7= ZAleh1x+k|y

Then D?z = A h2e"* %1 and D'z = A ke *th1Y. Putting these values in the factor (2D? —D')z, we
get

2A1h%eh1x+k1y _Alklehlx-qu =0 — A1(2h% _ kl)eh1x+k1y =0
2ht —ki =0 = ki =2h}.
Replacing k; by 242, the complementary function (C.F.) corresponding factor (2D?> — D')zis C.F. =
ZAlehl”z"%y . Now the required general solution of the given equation is
7= ZAehx+h2y + ZAleh1x+2h%y’
where A, Ay, h and h| are arbitrary constant.
Exercise
Solve the following PDE:

D/2)Z = n2z Ans. 7 — ZAen(xcosa+ysina) (Here h = ncos o and k = nsin o)
D+2D/ )(D2+D,)Z_O Ans. Z:e3xf1(y_2x)+ZAehx—hzy

2.,

(1) (D?
@ (
(3) (D*>—D')z=0 Ans. z =Y Ae"y
(4) 2D*>-D?+D)z=0  Ans.z=Y A where 2h> —k*> +h = 0.

Working rule for finding Particular Integral P.I. of reducible/irreducible non-homogeneous
linear partial differential equations with constants coefficients.

Let the given reducible/irreducible non-homogeneous linear partial differential equations with
constants coefficients be F(D,D')z = ¢(x,y)

Case-I: When ¢ (x,y) = ¢*? and F(a,b) # 0.

Then, we get the P.I. by replacing D by a and D’ by b. i.e.

Pl = 1 ax+by _ 1 eaerby
F(D,D') F(a,b)
= Example 1.48 Solve the PDE (DD’ +aD+ bD' +ab)z = ™. .

Solution: The given equation can be written as (D + b)(D' + a)z = €™, which is reducible.
Hence complementary function (C.F.) is
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C.F.=e " fi(y) +e ¥ f>(x), f1 and f> are arbitrary constant.

and

Pl = 1 ax+by __ 1 emx+ny — 1 emx+ny_

F(D,D') (D+b) (D' +a) (m+b,n+a)
Hence the required solution is

1
—ebx —ay - pmxtny
z=e " fi(y)te fz(x)+(m+b7n+a)e

= Example 1.49 Solve the PDE (D> —D? 4D — D')z = e+, .

Solution: The given equation can be written as
(D—D)(D+D)+D—Dz=e*" = (D-D')(D+D'+1)z=e>"¥,
which is reducible. Hence it’s complementary function (C.F.) is

C.F.= fily+x)+e *foa(y—x), f1 and f, are arbitrary constant.

and
1 1 1 1
Pl = ax+by _ 2x+3y 2x+3y —_— = 2x+3y.
F(D,D)°¢ D-DYD+D+1)° 2-3)2+3+1)° ¢
Hence the required solution is
1
2= fily+x)+e hly—x)— 882x+3y.
= Example 1.50 Solve the PDE (D> —4DD' 4+ D — 1)z = >~ %, .

Solution: The given equation can not be written as linear factors. Hence it’s complementary function
(C.F.) is taken as a trial solution

z=YATh,

Therefore we have Dz = Y. Ahe* ™% D?7 =Y Ah*e™®and DD’z = Y. Ahke™+% Put all these values
in given equation (D> —4DD’ +D — 1)z = 0, we have

T AR — 4F Ake R 1 ¥ AhehHh — ¥ A¢h R = 0,

= YA(h*—4hk+h—1)e"™ =0 = (h* —4hk+h—1)=0.

(R +h—1)
— k=)
4h
W +h—1
Thus C.F. = Y Ae™ % where k = (tlh)
1 1 1 1
Pl. = ax+by _ 3x-2y _ 3x—2y _ 3x—2y.
F(D,D)Y¢ (D2—4DD'+D—1)¢ (32—43.(-2)+3-1)° 35°

Hence the required solution is



40 Chapter 1. Partial Differential Equations

1 h?+h—1
z=Y Ae Ry 4 ge&‘*zy, where k = WAh-1) —tlh ) )
Exercise
Solve the following PDE:
(1) (D—D' —1)(D—D' —2)z=e*" Ans. 7= e fi(y+x)+ e fr(y+x) + (1/2)e* 1.
1 m+h+1
(2) (D3 —3DD' +D+ 1)z =e>+¥ Ans. 7 = Y Al — ?ezx”y, where k = (—gh—i—)

1
(3) (D*—D?—3D)z=&*>  Ans.z=Y Ao §e)f+2y, where 1 = VA2 + 3k.

4) (D> -D?4+D+3D' —2)z=¢""  Ans.z=e¢ ¥fi(y+x)+efrly—x)—(1/4)e*
Case-II: When ¢ (x,y) = sin(ax+ by) or cos(ax+ by).
Then, we get the P1., by replacing D> by —a?, D'? by —b? and DD’ by —ab in

1 1
PI.= FO.D) sin(ax+ by) or FD.D) cos(ax+by),
provided denominator should not be zero.
= Example 1.51 Solve the PDE (D* + DD’ + D' — 1)z = sin(x +2y). .

Solution: The given equation can be written as linear factors (D+ 1)(D+ D’ — 1)z = sin(x+2y).
Hence it’s complementary function (C.F.) is

C.F.=e¢ fi(y)+e faly—x).

Now
Pl : in(x+2y) 1 in(x+2y)
d. = —————S1n = sin =
FO,D) T Ty ppyp—1) T
in(x+2y) = — sin(x +2y).
3 (1) 3D =) e+ 2y) = g sin(r+2y)
PL = (D' +4)—sin(x+2y) — (D' +4)———— sin(x+2y)
o D> 4 2216 '
1 1o .
Pl. = —%(D +4)sin(x+2y) = ~30 [D'sin(x 4+ 2y) 4+ 4sin(x+2y)].

1
PI. = ~30 [2cos(x+ 2y) +4sin(x+2y)].
Hence the required solution is
1 .
z=efily) +e'faly —x) — 5 leos(x +2y) + 2sin(x +2y)].

= Example 1.52 Solve the PDE (D — D'?)z = cos(x — 3y). .

Solution: The given equation can not be written as linear factors. Hence it’s complementary function
(C.F.) is taken as a trial solution
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7= ZAeh)ﬁka‘

So that Dz = ¥ Ahe/* % and D>z = Y Ak?e***. By Putting these values in given equation (D —
D)z =0, we have

Y Ahe R Y A2 = 0 = Y A(h—k?)e 0 = 0.

h—k*=0 = h=k~.

Hence
C.F. =Y Ak xth,
1
Pl. = F(D7D/) COS(ax+by) = m COS(X— 3y) = mCOS(X— 3y) =
D19 cos(x —3y).
PL=(D-9)— 1 cos(x—3y) — (D—9)— " cos(x—3y)
T pr—g2 T B TR
1 1
Pl. = _ﬁ(D —9)cos(x—3y) = 5 [Dcos(x—3y) —9cos(x —3y)].
1 . L.
PI. = 5 [—sin(x —3y) =9cos(x—3y)] = = ) [sin(x —3y) +9cos(x —3y)].
Hence the required solution is
1
=Y At 4 D [sin(x —3y) +9cos(x —3y)].
Exercise
Solve the following PDE:
0° J? d
(1) a—x; — 8x8zy + af)zi —z=cos(x+2y) Ans. z=¢€"fi(y)+e * fa(y+x)+(1/2)sin(x+2y).

(2) (D*—DD'—2D)z=sin(3x+4y) Ans. 2= f1(y)+e* fo(y+x)+ (1/15) [sin(3x + 4y) + 2 cos(3x +4y)].
3) (D—D'—1)(D—D'—2)z=sin(2x+3y) Ans. 7= fi(y+x) +e* fo(y+x)+(1/10) [sin(2x + 3y) — 3cos(2x
@) (D*—D')z=cos(3x—y)  Ans.z=YAehthy _ é [—sin(3x —y) +9cos(3x —y)].
Case-III: When ¢ (x,y) = x"y" .
Then
1

Pl.= ———x"y' = [F(D,D')] " =x"y".
Fo.p) Y ~ DD y

which is evaluated by expanding [F(D,D’)] " in ascending powers of D/D’ or I/ /D as the case may
be.

= Example 1.53 Solve the PDE s+ p — g = z+ xy. ]
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The given equation can be rewritten as (DD'+D—D' —1)z=xy = (D—1)(D'+ 1)z = xy.
The complementary function (C.F.) is

e f1(y) + e fo(x), where f; and f; are arbitrary function.

Now

1 1
Pl———  mpn—
FO.0) " T -+ )"

= _(1—D)1(1+D’)xy = —(1-D)~'(1+D")"1xy.

=—[14+D+D*+..] [1-D'+D"?— .| xy.
=—[1+D+D*+..] [xy—D'(xy) + D*(xy) — ...].
=—[14+D+D*+..] (xy—x).
=—[(xy—x)+D(xy—x)+D*(xy—x)+...] .
=—[(y—x)+ -]
=—xy+x—y+1.
Therefore the required solution is
z=efily) +e folx) —xy+x—y+ 1L

= Example 1.54 Solve the PDEr—s+p=1. "

The given equation can be rewritten as (D>~ DD’ +D)z =1 = D(D—D' +1)z=1.
The complementary function (C.F.) is

f1(y) +e*fa(y+x), where fi and f> are arbitrary function.

Now

1 1

PlL.=—— "yl = — ]
FO,DY > ~DD-D+1)

= ll)(l +D-D)l1 = zl) [1-(D-D)+(D-D')?*—..].1

1
=—1==ux
D

Therefore the required solution is

z=fily) e falx+y) +x.
= Example 1.55 Solve the PDE D(D+D’ — 1)(D +3D' —2)z = x> — 4xy + 2y? .

The given equation is has reducible factor. Therefore, the complementary function (C.F.) is
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fi) + e fo(y —x) +e* f3(y — 3x), where f1,f> and f3 are arbitrary function.

Now

1 1

Pl.= ———¢(x,y) = DD+D —1)(D+3D —2)

2 2
—dxy+2

D+3D
2

—1
1(1(D+D’)“){1 } (x? — 4xy +2y?)

~ 2D

1 D+3D  (D+3D
:2D{1+(D+D’)+(D+D’)2+...}{1+ +<

2
5 5 > +...+}(x2—4xy+2y2)

D+3D’+ D+3D'\?

2 2

(D+D')(D+3D)
2

1
=—<14+(D+D)+(D+D')?
2D{+(+)+(+)+

} (x? — 4xy 4 2y%)

D+3D N D+3D'\?

2 2

(D+D')(D+3D)
2

1
—_ = 1 D D/ D D/2

} (x* —dxy +2y%).

3D 5D 7D*> 19D* 11DD’ . )
1+ =+= — dxy +2y%).
{+2+2+4+4+2 }(x xy +2y°)

7
{(x2—4xy+2y2)—|—3(x—2y)—|—5(2y—2x)—|—2+19—22}.

1
{x2—4xy+2y2—7x+4y+2}.

X’ 7x? x
= 2Py 2y — —— Ay S ).
2{3 X"y +2y°x 2+xy+2}

Therefore the required solution is

X 2x 1 x3 2 2 7x2 X
z=fiy)+efly—x)+e f3(y*3x)+5 §72xy+2yxf7+4xy+§ :

Exercise

Solve the following PDE:

() (D+D' —1)(D+2D'—3)z=4+3x+6y Ans. z=e"fi(y—x)+e* fo(y—2x) +6+x+2y
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() (D> ~D"?—-3D+3D')z = xy Ans. 7= fi(y+x)+e¥fH(y—x) — (1/6)x%y — (x*/9) —
(2x/27) — (x¥*/18).
B) r—t+p+3¢g—2=x% Ans. 2= e Zfi(y+x) +e fo(y —x) — (4x%y 4 dxy + 6x> + 6y +
12x+21)/8.
Case-IV: When ¢ (x,y) = Ve where V is a ny function of x and y.
Then

Pl. = LVe“"*}’y — ptxtby 1

V.
F(D,D') F(D+a,D'+Db)

= Example 1.56 Solve the PDE (D* — D')z = xe® 4"y .

Solution: The given equation can not be written as linear factors. Hence it’s complementary function
(C.F.) is taken as a trial solution

z=Y Aethy,

So that D%z = Y Ah?e™+% and D'z = ¥ Ake™**¥. By Putting these values in given equation (D? —
D')z =0, we have

Y AR TR — ¥ Ake TR = 0 — T AR — k)T = 0.
W —k=0 = k=
Hence

C.F. = Y Aeheth’y,

1 1 . Y 1
PI = — Y — ax—+a“y — ax—+a-y
Fo.0) " = ooy T = v e
1 1 1
— axtaty ____ ~ — ax-+a?y
¢ D }2aD-D" Wb | (D7D x
2aD

1 -\
—t ax+a’y 1
¢ ZaD[ +< 2aD >} *
(DD, (DD 2
— — . x
2aD 2aD
1 D D’
- ax+a2y7 — ~ A cee
¢ 2aD [X (Zax 2an> * }

1 1 1 [x2 1
— eax+a2y2aD [x_ :| - eax+a2y7 [x _ x:|

1

— eax+a2 y
2aD

Hence the required solution is

2
=Y Ae’lx+h2y + eaX+a2y o ]
4a 4a?
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 Example 1.57 Solve the PDE (D — 3D’ —2)?z = 2¢*sin(y + 3x) .

The given equation is has reducible factor. Therefore, the complementary function (C.F.) is

e¥ [fi(y+3x) +xf>(y+3x)], where fi and f> are arbitrary function.

Now
PI L o) L pesin(y+3x)
. = ——0xr = sin
F(D,0) """ = (D—3p —22=¢ VT
R S Y sin(y+3x) = 2> ! sin(y+3x
(D—3D'—2)? ((D+2)=3(D' 40) —2)?

2

1 . .
= 2ezxm sin(y+3x) = 262)‘% sin(y + 3x)

Hence the required solution is

2

2= ¥ [fi(y+3x) +xfa(y +3x)] +2€2x% sin(y + 3x).

Exercise
Solve the following PDE:

(1) (3D* —2D? +D — 1)z = 4" cos(x +y) Ans. 7 = Y AR 4 (4/3)e Y sin(x + y),
where h and k are related by 3h% —2k*> +h— 1.
(2) (D—3D' —2)%;=2¢*tan(y + 3x) Ans. 7 = e* fi(y +3x) +xfo(y +3x) + x> tan(y +
3x).
3) r—3s+2t—p+2qg=(2+4x)e™” Ans. z = fi(y+2x) + e fo(y+x) +x%e.
Case-V: When ¢ (x,y) = e“*? and F (a,b) = 0.

Then
1 1 , 1
Pl = 7eax+by — 7eax+b)'l — eaerby .XOyO
F(D,D’) F(D,D") F(D+a,D' +Db)
= Example 1.58 Solve the PDE (D> —D')z = . .

Solution: The given equation can not be written as linear factors. Hence it’s complementary function
(C.F) is taken as a trial solution

7= ZAeh)H»ky.

So that D?z = Y Ah?e™+% and D'z = ¥ Ake™ % By Putting these values in given equation (D? —
D')z =0, we have

YAR? MR — ¥ Ake TR = 0 = L A(R* — k)R = 0.
h*—k=0 = k=h

Hence



46 Chapter 1. Partial Differential Equations

C.F. =Y Ay,

1 1 1
Pl.= —— = V] =Y 1
F0.0) "™ = =Dy (RS ey
e L 1= e)‘+yi 1 1
D2+2D—D' 2D1 D>—D
2D

1 p2—p\1"
— et |1 1
¢ 20[ +< 2D ﬂ
D2—D D2—D\?
1— + —.la
2D 2D
1 D D
et — 1= (21— = 1) +..
¢ ZD[ <2 2D >+ ]

1 1
:ex—"—yﬁ(l) :>:ex+y<2)x

Hence the required solution is
X
z :ZAehx+h y+7ex+y'
2
Exercise

Solve the following PDE:

(1) (D*—~D? -3D+3D'); =% Ans. z = fi(y+x) +e¥ fr(y — x) —xe* .
() (D*>—D)z=e>" Ans. z = Y Ay — %ezﬁy

(B) r—4s+4r+p—2g=¢€" Ans. 7= fi(y+2x) + e fo(y+ 2x) —xe* .
Classification of second order partial differential equations

Consider a general second order partial differential equation for a function of two variables x and y
in the form

Rr+Ss+Tt+f(x,y,z,p,q)=0, (1.79)

d 0? 9° J?
—Z, r= —Z, s = < = —Z. Also R, S and T are continuous functions of
dy dx? dxdy dy?
x and y only possessing partial derivatives defined in a domain D on the x — y plan. Then the given
equation (1.79) is said to be

e Hyperbolic at a point (x,y) in domain D if §> — 4RT > 0

e Parabolic at a point (x,y) in domain D if § —4RT =0

e Elliptic at a point (x,y) in domain D if S> —4RT < 0

dz
where p = 5 q=
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= Example 1.59 Classify the following partial differential equation

L 92 _0%
T Ox2 9y

2 2 2
2292, 9% 397,

dx?  dxdy =~ dy?
3. (xy—1)r=2(*y* = 1)s— (xy+ 1)t +xp+yq =0

Solution (1.) The given equation can be written as r —t = (0. Comparing the given equation with
Rr+Ss+Tt+ f(x,y,2,p,q) =0,

We have R=1,S=0and T = —1. Put these values in S> —4RT = (0)> —4.(1)(—1) = S?—4RT =
4 > 0. Therefore the given equation is hyperbolic.

Solution (2.) The given equation can be written as 2r 4 s+ 3t —2 = 0. Comparing the given equation
with

Rr+Ss+Tt+ f(x,,2,p,q) =0,

We have R =2, S = 1 and T = 3. Put these values in S> —4RT = (1)> —4.(2)(3) = S> —4RT =
—23 < 0. Therefore the given equation is elliptic.
Solution (3.) Comparing the given equation with

Rr+Ss+Tt+ f(x,y,2,p,q) =0,
We have R = (xy — 1), § = —2(x*y?> — 1) and T = —(xy -+ 1). Put these values in
S? —4RT = (—2(x*y* = 1))2 —4.((xy—1)).(—(xy+1)) = 4(x*y* —1))>+4.((x}»* - 1)).
S? —4RT = 4x*y*(x*y> —1).

Case-1: Either x = 0 or y = 0 or both x = y = 0. In this case S> —4RT = 0, hence given equation is
parabola.

Case-2: If xy = &1, then in this case S> — 4RT = 0, hence given equation is parabola.

Case-3: If x>y? > 1, then in this case S> — 4RT > 0, hence given equation is hyperbola.

Case-4: If x*>y? < 1, then in this case S> — 4RT < 0, hence given equation is elliptic.

2?2 2?2
s Example 1.60 — (AKU-CE-11,2019). Classify the partial differential equation a—t;l —Ha—aut
x
2%u Ju Jdu

g H01 01—
Yo T T T -

Solution: Comparing the given equation with

_l’_

Rr+Ss+Tt+ f(x,y,2,p,9) =0,
We have R =x, S =t and T = 1. Put these values in
S? —4RT = (t)> —4.(x).(1) = S? —4RT =1>—4x.

Case-1: If x = t2 /4, then in this case S> — 4RT = 0, hence given equation is parabola.
Case-2: If x < t?/4, then in this case S — 4RT > 0, hence given equation is hyperbola.
Case-3: If x > 12 /4, then in this case S> — 4RT < 0, hence given equation is elliptic.
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= Example 1.61 — (AKU-CE-I1,2019). The region in which the following partial differential equa-
fon w2 1397 59 s

X' == +35—= =5 +5u=0.

ox2 " “oxdy T ay? -
Solution: Comparing the given equation with
Rr+Ss+Tt+ f(x,y,z,p,q) =0,
We have R = x3, S = 3 and T = 27. Put these values in
S2 —4RT = (3)> —4.(x*).(27) = S?> —4RT =9 — 108x>.

Case-1: If x = (1/12)'/3, then in this case S —4RT = 0, hence given equation is parabola.
Case-2: If x < (1/12)!/3, then in this case > — 4RT > 0, hence given equation is hyperbola.
Case-3: If x > (1/12)'/3, then in this case S — 4RT < 0, hence given equation is elliptic.

Exercise

Classify the following PDE:

0%z 9%z
” . +(9y;2_ ) 2
z z z

(3.) xyr — (x> —y?)s —xyt + py — qx = 2(x*> —y?)
@) (v = Dr—x(* = Ds+y(y—1Dt+xyp—g=0

METHOD OF SEPARATION OF VARIABLES

In this method, we assume that the dependent variable is the product of two functions, each of which
involves only one of the independent variables. So two ordinary differential equations are formed.
Notations: Let u(x,t) is a function of two variable x and 7. We use the following notations:

du u u u
5= Uy = uy(x,1), 5= up = uy(x,1), <8x>x_,r = uy(m,t1), (at>t_0 = u;(x,0)

du 9
= Example 1.62 Solve the boundary value problem a—” - 4a—”, if 1(0,y) = 8¢~ .
x dy
Solution: Given that
du Jdu
ou _ 4ou 1.80
dox dy’ (1.80)

with boundary condition #(0,y) = 8¢,
Let the given equation has the solution of the form u(x,y) = X (x)Y (y), where X is function of x

d
alone and Y is function of y alone. Now A _x (x)Y (y) and M _x (x)Y'(y). Putting these values

ox dy
in given equation, we have
X v

Since x and y are independent variables, therefore above equation can only true if each side is equal
to the same constant. i.e.
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X Y

— = — =k(constant) = X' —4kX =0and Y’ —kY =0

4 Y

These are ordinary differential equation of first order first degree. Therefore its solutions will be
!

X X
' =4k —> logX =4kx+logcy — — =4kx = X = c1e*™
C1

Similarly solution corresponding to Y’ — kY =0, we get Y = c,¢"”. Substituting the values of X and
Y in the trail solution u(x,y) = X (x)Y (y) i.e.

M(x,y) = cle4kx'C2eky — u(x’y) — Ce4kx+ky7

where C = c|c; is another arbitrary constant.
Now putting x = 0 and using boundary condition «(0,y) = 8¢, we have

u(0,y) = Ce*t 0ty — 8oy = Celv

Thus we have C = 8 and k = —3. Thus the required solution will be u(x,y) = 8¢~ 12~
d
= Example 1.63 Using the method of separation of variable, solvea—u = 28—? +u, where u(x,0) =
x
63, [
Solution: Given that
du du
- =24 1.82
ax o (182)

with boundary condition u(x,0) = 6e3*.
Let the given equation has the solution of the form u(x,7) = X (x)7T'(¢), where X is function of x

d
alone and T is function of # alone. Now a—u =X'(x)T () and a—? = X (x)T'(¢). Putting these values
x

in given equation, we have

X' T’
X'T=2XT'+XT = X'T=XQ2T'+T) = ¥ :2?+1, (1.83)

Since x and ¢ are independent variables, therefore above equation can only true if each side is equal
to the same constant. i.e.

X’ T’
e =2 <T> +1=k(constant) = X' —kX =0and 2T'+T —kT =0

These are ordinary differential equation of first order first degree. Therefore its solutions will be

X' X
X' —kX =0 = Y:k = logX =kx+loge; = — =kx = X =¥
1

T’ k—1
Now, solution corresponding to 27"+ T —kT =0 = 2T'=T(k—1) = 2? = ( 3 )

getT = czeo%)’ . Substituting the values of X and T in the trail solution u(x,1) = X (x)T (¢) i.e.

, We

u(x,t) = clek".cze@ = u(x,1) = Ce’“*@,
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where C = cjc; is another arbitrary constant.
Now putting ¢ = 0 and using boundary condition u(x,0) = 6e~3*, we have

u(x,0) = Cek+ e

= 6e ¥ =CeM

Thus we have C = 6 and k = —3. Thus the required solution will be u(x,t) = 6e~3~%,

Exercise
Solve the following PDE:

du du 3 _s ~3(4x4y) —5(dx+y)

(1.) 8——48——0 ifu(0,y) =8¢ +4e™ Ans. u(x,y) = 8¢ W) 4 48 HY),
X
Y 822 82
(2.) Show that z(x,y) = 4¢3 cos 3y is a solution to the boundary value problem 2 + a— =0,
Yoy

if z(x,7/2) = 0 and z(x,0) = 4e~>*.

02 d
(3.) a—xg a—u =0if u(x,0) = x(4 —x)

0’z du

4. Rl 0 which satisfy the boundary conditions z = 0 when x = 0 and 7; z = sin3x
wheny=0and 0 <x < 7.
Ans. z(x,y) = sin3xe” "
(5. 2a ! g? = 0 which satisfy the boundary conditions 0 < x < 3, u(0,7) = u(3,7) = 0 and
(x O) 5sindmx — 3sin8mx + 2sin 107x.

2, . _ 2. . _ 2. .
Ans. u(x,t) = Se 3" sin4nx — 3¢ 1287 sin 87rx + 22007 ' sin 107x.

General solution of one-dimensional wave (vibrational) equation satisfying the given
boundary conditions

Consider one-dimensional wave equation
u 1 9%u
ox: 2 or’

with boundary conditions u(0,7) = 0 and u(a,t) =0, Vr.
Solution: Given that

’u 1 9%u
g 27 1.84
ax2 2 dt?’ (1.84)
with boundary conditions u(0,7) = 0 and u(a,t) = 0.
Let the given equation has the solution of the form u(x,7) = X (x)T (¢), where X is function of x alone
52
and T is function of ¢ alone. Now a—z =X"(x)T(¢) and —u = X (x)T"(¢). Putting these values in
given equation, we have
1 X// T//
X'T=-XT" = — = 1.85
c? X T’ (1.85)

Since x and ¢ are independent variables, therefore above equation can only true if each side is equal
to the same constant. i.e.
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X/I TI/
Y a7 = k(constant) = X" —kX =0and T" — c*kT =0
c

These are ordinary differential equation of second order with constant coefficient. Now to solve

these two equations X” — kX = 0 and T"” — c’kT = 0, three cases arises:
Case-1 When k = 0, then both equations reduces to

X'"=0 = X=ax+a
and
T"=0 = T = a3t +au.
Thus the required solution is
u(x,t) = (a1x+az)(ast +as). (1.86)
Case-II When k > 0, we can take k = A?(say), then both equations reduces to

X" —A%*X =0 = the auxiliary equation is (m> —A1%) =0 = m = 4A. Therefore its solution
will be X = bye** + bye *

and
T"— AT =0 = T = byeM + bye M,
Thus the required solution is
u(x,1) = (bre™ + bre %) (b3e™ + bye™M). (1.87)
Case-IIT When k < 0, we can take k = —A?(say), then both equations reduces to

X"+ A%X =0 = the auxiliary equation is (m> + 1%) =0 = m = £Ai. Therefore its solution
will be X = ¢ cos(Ax) + ¢y sin(Ax)

and
T"+ AT =0 = T = c3cos(cAt) +cysin(cAt).
Thus the required solution is
u(x,t) = (¢ cos(Ax) +casin(Ax))(c3cos(cAt) 4 casin(cAt)). (1.88)

Thus the equation (1.86), (1.87) and (1.88) are various possible solution of the given wave equation.
Given boundary conditions are u(0,7) = u(a,t) =0 Vt In view of the boundary condition, the
solution given by the equation (1.86) becomes

O0=az(ast+as) and 0= (aja+az)(ast+az)
= ay=0 and (aja+a)=0 = a1=ay=0

Hence u(x,t) =0 Vr. This is a trivial solution.
Again, in view of the boundary condition, the solution given by the equation (1.87) becomes
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0= (bl + bz)(b3€CM + b4€76M) and 0= (blela + bze’l“)(b3ed” + b4€7€lt>
— (b1 +b))=0 and bie*+be?=0= b =b=0

Hence u(x,t) =0 V. This is also a trivial solution.
Finally, in view of the boundary condition, the solution given by the equation (1.88) becomes

0=cy(c3cos(cAt) +cysin(cAt)) and 0= (cjcos(Aa)+casin(Aa))(c3cos(cAt)+ cqsin(cAt))
= ;=0 and c¢;sinda=0
Now for non-trivial solution of given wave equation, we can not take ¢ =0
= sinla=0 = Aa=nm n=1,2,3,..

Thus A =% n=123, ...
a

Hence the solution given by the equation (1.88) becomes

. nm nict . nmuct
uy(x,1) = czsm; <030057+C4sm7) n=1,2,3,...

niwct niwct

T
un(x,t):sinn—<Encos —|—Fnsin—> n=1,23,..
a a

a
Where E, = (cpc3) and F,, = (cac4) are new arbitrary constants.

Since the given wave equation is linear, its most general solution is obtained by applying the principle
of superposition, the required solution is

nmwct

nm nict
u(x,t) =Y jup(x,0) =Y sin— (Encos +Fnsin—) n=1,2,3,..
a a

General solution of one-dimensional wave (vibrational) equation satisfying the given
boundary and initial conditions

Consider one-dimensional wave equation
u 1%
oxz 2ot

where u(x,1) is the deflection of the string. the solution of this equation shows how the string
moves. More precisely, if the ends of string are fixed at x = 0 and x = a, we have the two boundary
conditions.

u(0,t) =0and u(a,t) =0, Vr.

The form of the motion of the string will depend on the initial deflection (deflection at # = 0) and on
the intial velocity (velocity at # = 0). Denoting the initial deflection by f(x) and initial velocity by
g(x), we get two initial conditions

u(x,0) = f(x), 0<x<a

and <8u> =g(x), ie wu(x,0)=g(x) 0<x<a
91 /1=
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Solution: Given that
Pu_1
dx2 2 9r?’

with boundary conditions u(0,7) = 0, u(a,t) = 0,u(x,0) = f(x) and u,(x,0) = g(x), 0<x<a.
Let the given equation has the solution of the form u(x,#) = X (x)T (), where X is function of x alone

(1.89)

9? 92
and T is function of 7 alone. Now a—g = X" (x)T(¢) and a—tl; = X (x)T"(t). Putting these values in
x
given equation, we have
1 X// T//
X'T=5XT' = — = — 1.90
2 X AT (1.90)

Since x and ¢ are independent variables, therefore above equation can only true if each side is equal

to the same constant. i.e.
X// T//
~— = —— =k(constant) => X" —kX =0and T" — c?kT =0
X T

These are ordinary differential equation of second order with constant coefficient. Now to solve
these two equations X" —kX = 0 and T” — ¢*kT = 0, three cases arises:
Case-I When k = 0, then both equations reduces to

X'=0 = X=a1x+a
Using boundary conditions u(0,7) = 0 = u(a,t), the trial solution becomes
0=X(0)T(z) and 0=X(a)T ().

Since T(t) =0 = u(x,t) =0, so we suppose that 7(t) # 0. Then we have X(0) = 0 and
X (a) = 0. Now using these boundary conditions, the solution X = a;x + a, becomes 0 = a;.0 + a;
and 0 =aj.a+ay; = a; = 0= ay, so that X (x) = 0, which yields u(x,7) = 0. So we reject case-1,
when k = 0.

Case-II When k > 0, we can take k = A% (say), then first equations reduces to

X" —A?X =0 = the auxiliary equation is (m?> — A?) =0 == m = £A. Therefore its solution
will be X = byt + bye 4~

Using boundary conditions u(0,¢) = 0 = u(a,t), the trial solution becomes
0=X(0)T () and 0=X(a)T(z).

Since T (1) =0 = u(x,t) =0, so we suppose that T'(¢) # 0. Then we have X (0) = 0 and X (a) = 0.
Now using these boundary conditions, the solution X = b My bze_“ becomes 0 =b le’l'o + bze_’l'o
and 0 = b1 +bre 4 — 0= by + by and b1 +bre 4 = b; = b, = 0, so that X(x)=0,
which yields u(x,7) = 0. So again we reject case-II, when k > 0.

Case-III When k < 0, we can take k = —A(say), then first equations reduces to

X"+ A%2X =0 = the auxiliary equation is (m> +A%) =0 = m = £Ai. Therefore its solution
will be X = ¢ cos(Ax) + 3 sin(Ax)

Using boundary conditions u(0,¢) = 0 = u(a,t), the trial solution becomes
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0=X(0)T(r) and  0=X(a)T(t).

Since T(t) =0 = u(x,t) = 0, so we suppose that 7(t) # 0. Then we have X(0) = 0 and
X (a) = 0. Now using these boundary conditions, the solution X = ¢ cos(Ax) + ¢, sin(Ax) becomes
0 = c¢;cos(A.0) +c25in(A.0) and 0 = ¢; cos(Aa) + ¢z sin(Aa) = ¢; =0and 0 = ¢, sin(Aa) =0
Now for non-trivial solution of given wave equation, we can not take ¢, =0

= sinla=0 = Aa=nm n=1,2,3,..

T
Thus A = % n=1,2,3,...
a

Hence non-zero solution X, (x) are given by

T
(¢2)n sm(” x) (1.91)
a
Similarly the solution corresponding to the equation 7”7 + A>T = 0 is
nmct . nxct
T,(t) = (c3)ncos + (c4)nsin (1.92)

Hence the required solution is

Z sin " (E, sin 20 ) (1.93)

Where E, = ((c2)n(c3)) and F, = ((¢2)n(c4)y,) are new arbitrary constants.
In order to find a solution which also satisfy u(x,0) = f(x) and u(x,0) = g(x), We differentiate
equation (1.93) w.r.t. ¢,

0 > nx [ —nm et T et
M_Z{sinnx< " g sin 2 L Mg osnc>} (1.94)
ot a a a a

n=1 a

Put 7 = 0 in equation (1.93) and (1.94) and using initial equation u(x,0) = f(x) and u(x,0) = g(x),
we get

=Y E,sin 2 (1.95)
n=1 a
and
> nncF, . nmx
_ nax 1.96
X) ; sin — (1.96)
Which are Fourier sin series of expansion f(x) and g(x), respectively. Accordingly we get
2 a
E,=~ / F(x)sin " ax (1.97)
alo a
and
/ g(x)sin @dx (1.98)
" nmc

Hence the required solution is given by the equation (1.93) where E,, and F;, are given by the equation
(1.97) and (1.98).
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= Example 1.64 Discuss D’ Alembert’s solution of one dimensional wave equation. or
Show that the general solution of the wave equation

92 92
czg—xl; = a—tl; isu(x,t) =@(x+ct)+ y(x—ct),
where ¢ and y are arbitrary functions. "

Solution: Given equation is
d%u 1 du
oxz 2 or?

Let v and w be two new independent variables such that
w=x+ct and v=x—ct (1.99)

Now

du_ o oudv
dx Jdwdx IJvox
Using equation (1.99), we have

Ju Jdu Jdu d J J
a:%—ka—v So that a—x:%—kg (1.100)

Thus
Pu_ o (ow\ _ Fu_(0 ) (ou ou
dx2  dx \ dx ax2  \dw dv ow  dv

%u  9%u %u  d%u

o~ aw? V2awav v (110D
Again
du  du 8w+8u8v
ot dwdr  dvar
Using equation (1.99), we have
du du  Jdu d d d
Thus
Pu_ 9 (du\ _ Pu_ (9 9\ (du ou
FI T oz~ “\ow av)\ow o
u (% %u % 1 9%u u %u  J%u
T <awz 2 owar 92) 2o <aw2 2 owar az) (1.103)
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Using (1.101) and (1.103) reduces to
9%u u  *u  d*u ’u  d%u 0%u

a2 o TR T aw Zaway T o awav (1.104)

0 (du

2 (aw) —0 (1.105)
Integrating (1.105) w.r.t. v, we get

Ju

S =Fw), (1.106)

where F' is an arbitrary function of w.
Integrating (1.106) w.r.t. w, we get
u= [Fw)dw+y(v),
where y is an function of v. Then
u=¢(w)+wy(v), where ¢(w) = [ F(w)dw
or
u=0¢(x+ct)+y(x—ct).

General solution of one-dimensional heat (diffusion) equation satisfying the given boundary
and initial conditions

Consider one-dimensional heat equation

d*u 10du

o2 kot
where u(x,1) is the temperature of the bar. If both the ends of a bar of length a are at temperature
zero and initial temperature is to be prescribed function f(x) in the bar, then find the temperature
at a subsequent time ¢. More precisely, the faces x = 0 and x = a of an infinite slab are maintained
at zero temperature. Given that the temperature u(x,t) = f(x) at + = 0. Find the temperature at a
subsequent time ¢.
Solution: Given that

*u 1du
Dt 1.107
o ko (1107
with boundary conditions u(0,7) =0, u(a,t) =0.
The initial condition is given by u(x,0) = f(x), 0<x<a
Let the given equation has the solution of the form u(x,7) = X (x)T (¢), where X is function of x alone
92 d
and T is function of ¢ alone. Now a—b; =X"(x)T(t) and a—? = X (x)T'(¢). Putting these values in
x
given equation, we have
1 X// T/
X'T=-XT' — = = (1.108)

k X kT’
Since x and ¢ are independent variables, therefore above equation can only true if each side is equal
to the same constant. i.e.
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X// T/
— = — = u(constant) = X" —uX =0and T’ — ukT =0
X kT
These are ordinary differential equation of second order and first order with constant coefficient.
Now to solve these two equations

X"—ux=0 (1.109)
and
T — ukT =0. (1.110)

Now three cases arises:
Case-1 When u = 0, then both equations reduces to

X'=0 = X=aix+a
Using boundary conditions u(0,¢) = 0 = u(a,t), the trial solution u(x,?) = X (x)T(t) becomes
0=X(0)T(t) and 0=X(a)T(z).

Since T(t) =0 = u(x,t) = 0, so we suppose that T(¢) # 0. Then we have X(0) = 0 and
X (a) = 0. Now using these boundary conditions, the solution X = ajx+ a; becomes 0 = a;.0+ a,
and 0 =aj.a+ay; = a; = 0= ay, so that X (x) = 0, which yields u(x,7) = 0. So we reject case-1,
when u = 0.

Case-II When u > 0, we can take i = A2(say), then equations X" — uX = 0 reduces to

X" —A%?X =0 = the auxiliary equation is (m> — %) =0 == m = +A. Therefore its solution
will be X = ble“ + bze*’b‘

Using boundary conditions u(0,7) = 0 = u(a,t), the trial solution u(x,#)X (x)T () becomes
0=X(0)T(r) and 0=X(a)T(1).

Since T(1) =0 = u(x,t) =0, so we suppose that 7'(¢) # 0. Then we have X(0) =0 and X (a) = 0.
Now using these boundary conditions, the solution X = b My bze_“ becomes 0 =b le’l'o + bze_’l'o
and 0 = b1e* + bye ** — 0=b| +by and bje** + bre ** = b; = by =0, so that X (x) = 0,
which yields u(x,7) = 0. So again we reject case-II, when u > 0.

Case-IIT When p < 0, we can take i = —A?(say), then first equations reduces to

X"+ A?X =0 = the auxiliary equation is (m> 4+ A?) =0 = m = £Ai. Therefore its solution
will be X = ¢ cos(Ax) + ¢z sin(Ax)

Using boundary conditions u(0,¢) = 0 = u(a,t), the trial solution becomes
0=X(0)T(t) and 0=X(a)T(z).

Since T(t) =0 = u(x,t) =0, so we suppose that 7(t) # 0. Then we have X(0) = 0 and
X (a) = 0. Now using these boundary conditions, the solution X = ¢ cos(Ax) + ¢, sin(Ax) becomes
0=cjcos(A.0)+c25in(A.0) and 0 = ¢j cos(Aa) +c2sin(Aa) = ¢; =0 and ¢zsin(Aa) =0
Now for non-trivial solution of given wave equation, we can not take ¢, =0

— sinla=0 = Ada=nn n=1,2,3,..



58 Chapter 1. Partial Differential Equations

Thus A = % n=1,2,3,...

a
Hence non-zero solution X,,(x) are given by

nmwx

X, (x) = (c2)nsin (—) (1.111)

a

Now the solution corresponding to the equation 7/ + A%kT = 0 is

/

7:_/lzk (1.112)

By integrating we get

— A2kt

logT = —A2kt +loge; => T = cse — T = cye" T/t (1.113)

. . _C? .
Hence solution is 7;,(t) = D,e~%!, where C, = (n?>m*k/a®) and D,, = c3 are new arbitrary constants.
The general solution is

un(x,1) = Y Eysin (ﬂ) e Gt (1.114)

where E, = (¢3),D,, is another new arbitrary constants.
Substituting # = 0 in (1.114) and using initial condition u(x,0) = f(x), we get

F(x) =Y Eysin (@) (1.115)
n=1 %
Which are Fourier sin series of expansion f(x). Accordingly we get
2 (@ . ATX
En:f/ f(x)sin—dx (1.116)
alo a

Hence the required solution is given by the equation (1.114) and E,, given by the equation (1.116).
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Laplace Equation

Definition 1.2.4 A two dimensional Laplace equation is defined as

%u  9%u

and a three dimensional Laplace equation is defined as

%u  *u  Ju
—+=——+=5=0 1.118
dx? + dy? * 27> ( )
Laplace equation is also known as potential equation.

If the problems involves rectangular boundaries, we use the Laplace equation given by (1.117) and
(1.118).

Laplace’s Equation in plane polar coordinates

If the given boundary problem involves circular boundaries, we use Laplace’s equation in polar
coordinates (7,0).

. 2u  J%u
= Example 1.65 Transform the Laplace’s equation —; + —
ox2  dy?

Solution: If (x,y) be the Cartesian coordinate’s of the point P whose polar coordinates are
(r,0), then

= 0 into polar coordinates (r,6). =

x=rcosf and y=rsin6 (1.119)

From (1.119)

P=24y  and  6=tan'2 (1.120)
x
From (1.120)
0 0
22—y = L =T —coso (1.121)
ox ox r
and
2r&:2y — 9" Y ing (1.122)
dy dy r
Also
00 1 y rsin6 sin @
= - ()= _ _ 1.123
dx 14 (y/x)? ( x2) r? r ( )
and
879: 1 1 :rcosezcose (1.124)
dy 1+ (/x)? \x r? r
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Now
@—@ﬁ+%a—e — 0056@ sm98u — i—cos@i sm9 J
dx drdx 060 dx ar r 00 ox or T
Therefore
&_i @ B Gi s1n9 d eﬂ_sineﬁ
dx2 Jdx\odx) €08 or r 00 cos or r 00
B 98 eau sin@ﬁ sin9 Jd 9% sin@ du
O\ T T 98) T T 96 or r a6
Pu . 1 du 1 9%u sin O ou
:cose[cosé)82 sm@(—rzae—kraraG)}— p { snﬂj
Jo‘u 1 Ju 2%u
Teos0590 r<° 989““9392)}
Thus
’u os? d’u 2sinBcos@ du 2sinBcos® J’u  sin’0 du  sin’6 J’u
Er eﬁ r2 20 r 8r39+ r E+ 2 002 (1.125)
Again
Ju 8u8r+@876:>$ 6@ c0398u 19 0 Cin Oi cos 6 0
dy  drdy 06 dy ar r 00 dy 8r r 00
Therefore
87214_& @ Sm98 cos98 9@+COSOQ
dy?  dy \ dy 8r 260 ar r 00
Gi 9@ cos@@ +00598 9@+cos6@
= sin ar sin or r 00 r 00 ar r 00
—sind [sin0 LY {cose (L0, 1 U] cosOT g0
=sinf|sin05 5 eosf{ 256 T 90 r 2 or
. 2 1 du 2%u
+Sm08r89 ( smeae—i-cosﬂaezﬂ
Thus
’u . ,,0%u 2sinBcosO du 2sin@cos® 9’u  cos’Odu  cos 682
o OGaet T . Gt ot 2 ae2 120
Adding (1.125) and (1.126)
Pu Fu_ o 1ou 1P
ox2  dy2  drr ror r?de?
Hence Laplace equation in polar coordinates is
Pu tou 1o
ar2  ror r206%
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Laplace’s equation in cylindrical coordinates

If the given boundary problem involves cylindrical boundaries, we use Laplace’s equation in cylin-
drical coordinates (r, 6,z).

, . %u  J*u  J’u ) _
= Example 1.66 Transform the Laplace’s equation —=— + =— + = = 0 into polar coordinates
dxz  dy? 0z
(r,0,2). .
Solution:
z
C
E
D p=tb. 2
or
“ (r, 8, 2)
9 Ty
A 0 r V

i Fig. Cylindrical coordirlate-s ‘
If (x,y,z) be the Cartesian coordinate’s of the point P whose cylindrical coordinates are (r,0,z),
then we know that

x=rcosb, y=rsin6 and 2=z (1.127)

Withx =rcos@, and y=rsin0, proceed as in the Example (1.65) and prove that

%u  d%u B aiu 19u 1 d%u

—+ === ——t == 1.128
dx? + dy?  dr? + ror + r2 062 ( )
. d%u .
Adding 92 on both side of (1.128), we get
Z
ox2  9y2 92 9r:  ror r:der 9z )
0? 0? J?
Hence the Laplace equation a—xg + a—ybzl + a—zg = 0 reduces to
02 1 1 92 92
u du o0°u “_, (1.130)

ar trart et taz
Laplace’s Equation in spherical coordinates

If the given boundary problem involves spherical boundaries, we use Laplace’s equation in spherical
coordinates (r,0,9).

Pu Pu Pu
ox2  dy? 972
(r.0,9). .

m Example 1.67 Transform the Laplace’s equation = 0 into spherical coordinates
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Solution: If (x,y,z) be the Cartesian coordinate’s of the point P whose spherical coordinates
are (r,0,¢), then

X =rsin6@cos ¢ and y=rsinB@sin¢ and z=rcosH (1.131)
From (1.131)

(xz +y2)1/2
<

2

P=x+y +7 and tan 0 = and tan¢ = Y
X

2 4 241)/2
P=x>24y 42 and O —=tan”! <(X+y)> and ¢ =tan"! (X) (1.132)
b4 x
From (1.132)
2 o 9 _F  Gnbcoso, (1.133)
dx dx r
29 oy — 9T Y Gnpsing (1.134)
dy dy r
And
A SN . S (1.135)
dz dz
Also
a0 1 11 1 cos B cos ¢
96 _ I 1 ,) = cosbeosd 1.136
§ <(x2+y2)1/2>2 <z2<x2+y2>1/2 > : (1159
()
8£:cos9s1n¢7 and 8£:_51n6 (1.137)
dy r dz r
And
ao sin¢ do  cos¢ a¢
- = _ T = — = 1.1
dx rsin@’ and dy rsin@ and dz 0 (1.138)
Now
@—@ﬁ_k@@_k@% — Sinecos¢)@+4cosecos¢@_ Sin(P @
dx Jdrdx 90 9dx J¢ ox ar r d0  rsinb d¢

9 . d cosBcos¢ d sing d
. afSIHQCOS(DE"Ff%_m%
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Therefore
’u 9 [du ) d cosBcos¢p d  sing 0 _ du cosBcos¢ du  sing Jdu
axz—ax<ax>—<sm"“’s¢ar+ p ae_rsinea¢> (S““’“’S%ﬁ p 89_rsin98¢)

. a (. du cosBcos¢ du  sing Jdu
_smecosq)g (sm@cosqﬁar+ . 30 rsin98(])>

cosOcosp 9 [ . du cosBcos¢ du  sing Jdu
L ae(smf’“’s%ﬁ F 90 rsin0d9
sing o9 [ . du cosOcos¢ du  sing Jdu
_rsin98¢<smecos¢8r+ r 00  rsin@ d¢
Thus
j_ 2 0 cos? 872u+2sin6005900s2¢ d%u _2sin600s90052(])@_2sin¢)cos¢ 2%u
g2~ SinBcos o5 9ra0 2 20 r 9rd¢
sing cos¢ du coszecoszd)@ cos? 0 cos? ¢ 82u_2cosesin¢cos¢ 0%u
2 00 r ar r? 002 r2sin @ 000¢
cosesinqbcosq)@ sinz(l)@ cosesinzq)@_i_ sin” ¢ Lzu
rzsinze a¢ r dr r2sin@ 06 r2sin26 a¢2
sing cos¢ o
———=t4.139
r2sin% 6 5% )
Again
@—@&—F%aﬁﬁ-%aﬁ@ - .n¢@+cosesin¢% cos¢ du
dy _drdy 90y ' a9 dy N\ 26 " rsin6 99
Jd . . d cosfsing d cos¢ d
- 8—y—sm9sm¢g+7’ﬂ 8 rsineﬁ
Therefore
*u 9 (du\ (. . 9 cosBsing d cos¢ 9 . . du cosOsing du cos¢ Jdu
ayz—ay<ay)—<sm"sm"’aﬁ p ae+rsinea¢> (Sm"sm"’aﬁr ae—rsmm)

o9 (. . du cosBsing du cos¢ du

—smGsmd)E (Sln951n¢(%’+r%_rsir198¢)

cosOsing d (. . du cosBsing du cos¢ du
r 86<Smesm¢8r+ r %_rsineﬁ

cos¢ d < du cosBsing du  cos@ 8u>

rsin@% smé)sm¢§+ r %_rsineﬁ
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Thus
2 2 : L2 2 . ) . 2
Q:Sinzesin2¢g+251necosesm ¢ d°u  2sin@cosOsin"@ du  2sindcos¢ J-u
dy? ar? r droo r? 20 r drd¢
_singcos¢ du coszesinzd)@ cos?@sin> ¢ d%u  2cosOsingcosd d%u
2 d¢ r ar r? 262 r2sin @ 200¢
_cosesinq)cosq)@ cosz(])@ cos@coszq)@ cos’ ¢ Lzu
r2sin?®  d¢ rodr r2sin’@ 99  r2sin®6 d¢?
sing cos¢ d
—————=(}.140
r2sin” 6 5% )
Finally
du_dudr o0 gude 0w sindou
dz  9rdz 909z 99 9z e T
. dJd ei_sinei
9z VorT T a0
Therefore
a—zu—i @ = cos@i——sirlei COSOQ—LHG%
022 9z \dz) ar r 26 ar r 06
Thus
d%u d’u  2sin@cos® d’u  2sinBcosO du sinzeﬁ sin? 0 9%u

TH_ o2l Y - X ST IH (1141
57 =0 98r2 r 3,00 " 2 56 7 9, 2 g02 ¢ )

Adding (1.139), (1.140) and (1.141)

Pu, Pu Fu_Pu 200 1Py c0tu 1
ox2  9y2 92 9rr rar r206? 2 900  y2sin?0 09

Hence Laplace equation in spherical coordinates is

d%u 20u 1 0*u cotb du 1 2%u

I — =0
or? + ror + r2 9002 + r2 00 * r2sin” 6 02
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Infroduction

Complex analysis is the study of functions that live in the complex plane, that is, functions that have
complex arguments and complex outputs.This course provides an introduction to complex analysis
which is the theory of complex functions of a complex variable. We will start by introducing the
complex plane, along with the algebra and geometry of complex numbers, and then we will make
our way via differentiation, integration, complex dynamics, power series representation and Laurent
series into territories at the edge of what is known today.

COMPLEX VARIABLE

x+ iy is a complex variable and it is denoted by z.
(1) z=x+iywherei=+/—1 (Cartesian form)
(2) z=r(cosO +isinb) (Polar form)
(3) z=re® (Exponential form)

FUNCTIONS OF A COMPLEX VARIABLE

f(z) is a function of a complex variable z and is denoted by w.

w=f(z)

w=u-+iv

where « and v are the real and imaginary parts of f(z).

NEIGHBORHOOD OF %,

Let zp is a point in the complex plane and let z be any positive number, then the set of points z such
that
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lz—z20| <&

is called e —neighbourhood of zj.

LIMIT OF A FUNCTION OF A COMPLEX VARIABLE

Let f(z) be a single valued function defined at all points in some neighbourhood of point zg. Then
f(z) is said to have the limit / as z approaches zy along any path if given an arbitrary real number
€ > 0, however small there exists a real number 6 > 0, such that

|f(z) —1| < € whenever 0 < |z—2zp| < 0

i.e. for every z # zp in d-disc (dotted) of z-plane, f(z) has a value lying in the e-disc of w-plane.
In symbolic form, limf(z)=I.
—20

AY VA
Ral o< . -
2.,
\ % .'l
\\ //
Z-plane X w-plane U
Note: (I) 6 usually depends upon €.
(IT) z — zo implies that z approaches zg YA
along any path. =370
The limits must be independent of the e es:
manner in which z approaches zg If we P 4 ,/:1’ S/
get two different limits as z — zo along K% //:z Pl {,/
two different paths then limits does not Wi - /,"
: . > 7
exist. z k:f_ )‘S
o =
2 +4z+3
= Example 2.1 Prove that lim © 1> —4_
z—1—i z+1
1 3
Solution: Iim S DEF3) (z+3)=(1—i)+3=4—i .
z—1—i z+1 —1—i
= Example 2.2 Show that lim x does not exist.
-0 |z]
. .z ) xX+1iy
Solution: lim — = lim ——
0z ()00 \/x2 2
Let lim X+ imx lim 1+im 1+im
y = mx’ = = =
=0\ /x2+ (mx)2 =0 /1+(m)2  V1+m?
1
The value of _him are different for different value of m. Hence the limit does not exist. m
V1+m?
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= Example 2.3 Show that limi does not exist.

z—02Z
Solution: Case-1. lim> = lim > — lim [lim Xy ] —lim> =1
=07  (xy)—=(00)Xx—1y x20|y=>0x—1y x—=0Xx
Again Case-2. lim<— lim 2 —fim [1imx+’,y ] —lim 2 =1
=07  (xy)—(0,0)xX—1y y=0 |[x=>0Xx—1y y—0 —1y
As z — 0 along two different paths, we get different limits. Hence the limit does not exist. "
Exercise
Show that th3€ limit does not exist )
Ltim M i S 3, pim R
-0 Re(z)3 20 (2)? =0 Im(z)
Find the limit of the following
Re(z)? 273 246243
s im0 Ane 0 6 lim —2 Ans.2(—144) 7.hm it Ane 32,
z—0 fz| z—1+i (Im(z)2 5072 +27+2
Continuity

The function f(z) of a complex variable z is said to be continuous at the point zy if for any given
positive number €, we can find a number & such that | f(z) — f(z0)| < € for all points z of the domain
satisfying

|z—20] < O
f(z) is said to be continuous at z = 7 if

lim f(z) = f(z0)

z—0
= Example 2.4 Examine the continuity of the function
P it +z—i

) = FaaraEEaL

0, z=1
atz =1 n

Solution:

e+ 1z=i) _ L (@H 1))

3 ) .
. A el Ay .z
lim f(z) =lim —————— =lim ) -
1 z—1 —1

71 77— Z—1 71

2N

=lim(z*+1)=0

=i

Also, we have f(i) = 0. Thus
=lim f(z) = /(i)

z—i
Hence f(z) is continuous at 7 = .

= Example 2.5 Show that the function f(z) defined by
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Re(z)
2#0
fz)=
0, z=0
is not continuous at z = 0. n
Solution:Here
R
lim £(2) = tim R im % gim {hm all ] —lim> =1
z—0 =0 Z (xy)—=(0,0) X +1y  x—0 |y—=0x+1y x—0Xx
Also
R 0
lim f(z) = limﬁ = lim — =lim [lim . } = lim — =0
7z—0 =0 Z (xy)—=(0,0) x+1y  y—=0 [x=0x+4 1y y—0 0+ 1y

AS lin% for two different paths, limit have two different values. So the limit does not exist. Thus f(z)
Z—

is not continuous at z = 0.
Exercise
Examine the continuity of the following functions

Im(z)

, 0
(1) f(z) = |z s atz=0. Ans. Not Continuous
0, z=0
243744
(2) flz)= Z+27Z+ atz=1—1i Ans. Continuous
- +1

DIFFERENTIABILITY

Let f(z) be a single valued function of
the variable z, then Y A

f/(Z) — lim f(Z+5Z) —f(Z)

5z—0 0z Q

(z+52)

provided that the limit exists and is
independent of the path along which
0z — 0. Let P be a fixed point and Q
be a neighbouring point. The point Q > X
may approach P along any straight line
or curved path.

X3y(y — ZX) 7& 0
mExample 2.6 If f(z) =¢ x0+y% ’

d
Then discuss d—f atz=0. n
0, z=0

<

Solution: If z — 0 along radius vector y = mx.
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y(y —ix)
s f@=F0) ey —ixy(x+iy)
F10) = lim === = lim | —— —Lm[<+y><+y>]

But along y = x°

= lim
z—0 Z z—0

HI=IO) _ —id() |- i () |

(x°+?)

d .

In different paths we get different values of d—f i.e. 0 and —%. In such a case, the function is not
Z

differentiable at z = 0.

= Example 2.7 Prove that the function f(z) = |z is continuous everywhere but no where differen-
tiable except at the origin. "

Analytic Function

Definition 2.8.1 A function f(z) is said to be analytic at a point zo, if f is differentiable not only
at zo but at every point of some neighbourhood of zj.

A function f(z) is analytic in a domain if it is analytic at every point of the domain.

The point at which the function is not differentiable is called a singular point of the function.

An analytic function is also known as “holomeorphic”, “regular”, “monogenic”.

Definition 2.8.2 Entire Function: A function which is analytic everywhere (for all z in the
complex plane) is known as an entire function.

m Example 2.8 1. Polynomials rational functions are entire.
2. |z|? is differentiable only at z = 0. So it is no where analytic. .

1. An entire is always analytic, differentiable and continuous function. But converse is not
true.

2. Analytic function is always differentiable and continuous. But converse is not true.

3. A differentiable function is always continuous. But converse is not true

THE NECESSARY CONDITION FOR F(Z) TO BE ANALYTIC

Theorem 2.9.1 The necessary conditions for a function f(z) = u+ iv to be analytic at all the
points in a region R are
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% _ W od % P provided 2P M g Py
ox 8y dy ax Provice dx’ dy’ dy’ a ox St

Definition 2.9.1 Cauchy Riemann equations: The equation

du_ov o oy
ox dy a dy  ox

is known as Cauchy Riemann equations.

SUFFICIENT CONDITION FOR F(Z) TO BE ANALYTIC

The sufficient condition for a function f(z) = u + iv to be analytic at all the
points in a region R are

Ju  dJv Ju  Jv

1. and — = ——
ox 8y 8y dx
Ju dv du Y . . ) .

2. —,—=—,—=—, and —— are continuous functions of x and y in region R.
dx’ dy’ dy dx

= Example 2.9 Show that the function ¢*(cosy+isiny) is an analytic function, find its derivative.m

Solution: Let ¢*(cosy +isiny) = u+iv.
So, ¢*cosy = u and e*siny = v then
du
dx

Here we see that

%
— =eé"cosy

0
dy

u Y .
= e*cosy, s n —e¥siny, Py e*siny, and
y X

du dv d% @
ox 8y dy dx

Thus are C — R equations and are satisfied and the partial derivatives are continuous. Hence,
e*(cosy+isiny) is analytic.
The derivative of the function e*(cosy +isiny) is

Ju Jv
/ ) . .
flz)=u+iv = —ax+l—ax

e*cosy+ie*siny = e*(cosy+isiny) = e*.e? = "t = ¢*
= Example 2.10 Discuss the analyticity of the function f(z) = |z|>. .
Solution: f(z) = |z]> =2z = (x+iy) (x —iy) =x* —*y? = x> +)?
f@)=xX+y'=u+iv = u=x+y*v=0

At origin,
du u(0+h,0)—u(0,0) = KW
dx  h=0 h N }lllg(l) h 0
_ 2
Q: - u(0,0+k) —u(0, 0)_limk—:0
dy k=0 k k=0 k
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Also
v — lim v(0+h,0) —v(0,0) _o
dx  h—0 h
0 _
AT v(0,0+k) —v(0,0) _o
dy k=0 k
d d d
Thus the C — R equations U _ %Y and 28 = 2 are satisfied and the partial derivatives are
dx dy dy dox
continuous. Hence, f(z) = |z|? is analytic at origin.
= Example 2.11 Show that the function f(z) = u + iv, where
S(L+i)—y3(1—i
Y BT ST
f(z) = x+ty
0, z=0
satisfies the Cauchy-Riemann equations at z = 0. Is the function analytic at z = 0? Justify your
answer. .
3 ; 3 :
. 1+ -y (1-i) ,
Solution: f(z) = PEp =u+iv
By By
u=_5—-5 ~and v=—5-—5
xX“+y Xty
At origin,
d 0+h,0) — h?/h?
dx  h—0 h h—0 h
J 0,0-+k) —u(0,0 —k /K
0 _ iy MO0EH) Zu(00) _ o ZK/E
dy k=0 k k=0 k
Also
p) _ 3/p2
v _ imv(O—i—h,O) v(0,0) :limh /h _q
dx  h—0 h h—=0 h
pa) _ 3/12
v _ irnv(O,O—Hc) v(0,0) zlimk/k 1
dy k-0 k k=0 k
d d d d
Thus the C — R equations T _ 97 and 22 = %Y are satisfied. Again for derivatives
dx dy dy dx
B(1+i) -y (1-i) 0
0)— (0 2 2 - 3 1 N3 1—i
7z—0 Z 7z—0 x—+1y =0 (x2 +y2) (x+1iy)

Now let z — 0 along y = mux, then

tim x3(1+i)—(mx>3(1—i)] . [(1+i)—(m)3(1—i)] _ [(1+i)—<m)3<1—i>}
x50 | (22 + (mx)?) (x + i(mx)) (1+ (m)2)(1+im) (1+ (m)2)(1+ im)

- x—0

d
Which depends on the value of m. So for different paths we get different values of —f In such a
Z
case, the function is not differentiable at z = 0. Hence given function is not analytic at z = 0.
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C-R EQUATIONS IN POLAR FORM
The C — R equations in polar form is

Ju 19dv u v
= and — =-r

or  rof 00 or
Exercise

Determine which of the following functions are analytic:

(1) X2 +iy? Ans. Analytic at all points y = x
(2.) 2xy+i(x**y?) Ans. Not analytic

(3.) sinxcoshy—+icosxsinhy Ans. Yes, analytic

(4.) Show the function of Z is not analytic any where.
y(y — ix) 40

(5.) Discuss the analyticity of the function f(z) = x*+y? o atz=0.
0, z=0

2.12 Harmonic Function

Definition 2.12.1 Any function which satisfies the Laplace’s equation

9%f  9°f
o T o 7!

is known as a harmonic function.

Theorem 2.12.1 If f(z) = u+iv is an analytic function, then  and v are both harmonic functions.
Such functions u# and v are called Conjugate harmonic functions if u« + iv is also analytic
function.

= Example 2.12 Prove that u = x> —y? and v = )ﬁyz are harmonic functions of (x,y), but are not
harmonic conjugates. "
Solution:
2 2
gzz ,gxbz‘_z, ';;‘ —2y,gyl;——2
Thus
2 2
3;2{ + gybzt =2-2=0

u(x,y) satisfies Laplace equation, hence u(x,y) is harmonic.
Now

v 2y 9 (P +yH)A(—2y) — (—20)2(x* +y7) (2x)

ox  (x2+y%)?" ox? (x2+y2)*

(o +3%)(=2y) — (=2xy)2(2x) _ (6x°y —2%)

(X2 +y2)3 (X2 +y2)3
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Iy (+y)1—y2(x*+))(2y)  (F* =)

ay (x> +y?)? (x* +y2)%
_ 9 (P4 (=2y) - (6 —y)2(7 01 (2y) (P +y)(=2y) — (¥ —yP)2(2y)
92 (2 )y2) (2423
(—6x°y+2y%)
(2423
Thus
Py Py (622 | (6220
ox2 2\ (2+y2)3 (2 +y2)3 -
v(x,y) satisfies Laplace equation, hence v(x,y) is harmonic.
But
I I T
dx ' dy an dy ox’

Therefore u and v are not harmonic conjugates.

METHOD TO FIND THE CONJUGATE FUNCTION

Case L. Given. If f(z) = u+iv, and u is known.
Claim: We have to find conjugation function v.

m Example 2.13 If w = ¢ + iy represents the complex potential for an electric field and

2 2
= X" — +

determine the function ¢.

Solution: We have, w = ¢ + iy and y = x> — y* + 2 —T—yz so that
2002y 1 2.2
y _A (x*+y°).1—x.(2x) P (y= —x)
Ox (2 +y2)2 (2 +y2)?
v _ —x.(2y) _ —2xy
0 (2 +y2)2 (x2+y2)?
We know that
_d9 . 9¢
. . d¢ Jdy ¢ oy
—R Zr_Zr Zr __ 27
Using C equations ax  dy’ and Iy e
dy dy
dp = —dx——d
¢ dy oW
Putting the values of 871// and 871//’ we get

dx dy
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The R.H.S. is an exact differential equation of the form Mdx +Ndy. Hence its solution is

do=][ <—2y+ (xz—i););)Z) dx = ¢ = —2xy+ ()cz)}Tyz)+c
= Example 2.14 Prove that u = x> — y?> — 2xy — 2x -+ 3y is harmonic. Find a function v such that
f(z) = u+iv is analytic. Also express f(z) in terms of z. .
Solution: We have, u = x> —y? — 2xy — 2x 4+ 3y so that
du du

8—x:2x—2y—2 and sz:z
u 2%u
a—y:—Zy—2x+3 and 87))2:_2
Thus
0*u  d%u
—+=—==2-2=0.
8x2+8y2

u(x,y) satisfies Laplace equation, hence u(x,y) is harmonic.
We know that

v v
dv=—dx+—=—d
Y dx X dy Y
0 ) 0 0
Using C — R equations a—z = &—;, and 87; Z4 _OT:
u u
dv=——d d
Y dy 1 W

d
Putting the values of % and —u, we get

ox dy
dv=—(—2y—2x+3)dx+ (2x—2y—2)dy
The R.H.S. is an exact differential equation of the form Mdx + Ndy. Hence its solution is
v=—[(=2y—2x+3)dx+ [(—2y—2)dy = v=2xy+x>—3x—y*—2y+c

f(2)= U+ iv
(x? —y? —2xy — 2x+3y) +i(2xy+x* = 3x—y* =2y +¢)

(x? —y? 4 2ixy) + (ix* — iy* — 2xy) — (24 3i)x — i(2 4 3i)y + ic

(x? —y? 4 2ixy) +i(x* — y* 4 2ixy) — (24 3i)x — i(2 4 3i)y + ic

(x+iy)> +i(x+iy)? — (24 3i) (x+iy) +ic

— P +iz? — (2+3i)z+ic

= (140)z* — (2+3i)z +ic

Which is the required expression of f (z) in terms of z.
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= Example 2.15 Let f(z) = u(r,0) +iv(r,0) be an analytic function and u = —r3sin36. then

construct the corresponding analytic function f(z) in terms of z. "
Solution: We have u = —r3sin36. Then
d d
airt = —3/2sin36 and £ = 330536
We know that
dv adv
dv=——dr+—=-d0
R T,
u 19dv du dv
Using C —R tions in polar f —_— = d = =
sing equations in polar form — = ——, an 56 P
1 du du
dv=——=-d ——do
! rado r "or

d d
Putting the values of " and —u, we get

or 00
1
o

dv = ——(—3r3cos30)dr+ r(—3r*sin30)d6

dv = (3r’cos30)dr— (3r’sin30)d6
The R.H.S. is an exact differential equation of the form Mdr+ Nd8. Hence its solution is
v=[(3r?cos30)dr+c = v=r>cos30 +c
Now,

f(z) =u+iv=—r’sin30 +ir’cos36 +ic = ir*(cos 30 +isin30) +ic
flR)=ire® +ic = f(z) = i(rei9)3 +ic =iz’ +ic

» Example 2.16 If u —v = (x — y)(x* +4xy+*) and f(z) = u+iv is an analytic function of
z=x-+1y, find f(z) in terms of z. .

Solution: u+iv= f(z) = iu—v=if(z)
Adding these, (u—v)+i(u+v) = (141i)f(z) Let

U+iV=(14i)f(z) whereU =u—vandV =u+v
F(z) =(1+i)f(2)
U=u—v=(x—y)(x* +4xy+y?) = x> +3x%y - 30> —)*

U U
— =3x? 4 6xy —3y? and = = 3x> — 6xy — 3)?
dx dy

‘We know that
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oU 9V U A%
Using C — R equations o Fe and F =3
oU oU
dV = ——=—dx+—=—d
v dy ot ax

oU U
Putting the values of — and —, we get

ox dy
dV = —(3x% — 6xy — 3y?)dx + (3x* + 6xy — 3y?)dy
The R.H.S. is an exact differential equation of the form Mdx + Ndy. Hence its solution is

V=—[(Bx®—6xy—3y})dx+ [(=3y*)dy = V = —x>+3x%y+3xy> =y’ +¢

Now,
= (3% 307 =y ) +i(—° + 3%y + 30 —y®) +ic
= (1= +1+D)3%y—(1—)3x% — (1+i)y* +ic
= (1= +i(1—i)3x%y— (1 —i)3xy* —i(1—i)y’ +ic
= (1= +3ix’y —3xy* — iy’] +ic
= (1=i)(x+iy)’+ic
= (1-i) +ic

Thus

(140 f(z) = (1 —i)Z® +ic,

(102 ic
f&="a5y T+
Exercise

MILNE THOMSON METHOD (TO CONSTRUCT AN ANALYTIC FUNCTION)

WORKING RULE: TO CONSTRUCT AN ANALYTIC FUNCTION BY MILNE THOM-
SON METHOD
Case I. When u is given

0
Step-1: Find a—u and equate it to ¢ (x,y).
X

d
Step-2: Find a—u and equate it to ¢ (x,y).
y

Step-3: Replace x by z and y by 0 in ¢ (x,y) to get ¢;(z,0).

Step-4: Replace x by z and y by 0 in ¢ (x,y) to get ¢>(z,0).

Step-5: Find f(z) by the formula f(z) = [ [91(z,0) —i¢2(z,0)]dz+c¢
Case II. When v is given
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d
Step-1: Find 8—v and equate it to Yy (x,y).
x

adv
9y
Step-3: Replace x by z and y by 0 in y;(x,y) to get y;(z,0).
Step-4: Replace x by z and y by 0 in y,(x,y) to get y2(z,0).
Step-5: Find f(z) by the formula f(z) = [ [w1(z,0) +iy2(z,0)]dz+ ¢

= Example 2.17 If u = x*> —y?, find a corresponding analytic function. "

Step-2: Find — and equate it to y;(x,y).

d 0
Solution: Here given that u = x> —y%. So that a—u =2x = ¢;(x,y) and a—u = -2y = M (x,y).
X y

On replacing x by z and y by 0, we have
1) = [181(20)~i2(0)]dz+c

= / (2z)dz+c
= Z+c
This is the required analytic function.

= Example 2.18 Show that ¢*(xcosy — ysiny) is a harmonic function. Find the analytic function
for which e*(xcosy — ysiny) is imaginary part. .

Solution: Here v = ¢*(xcosy — ysiny)

ov

3y = ¢ (xcosy—ysiny) +etcosy = ya(x,y)(say), (2.1)
X
v . .
EE (—xsiny —ycosy —siny) = yi(x,y)(say), (2.2
9%y . . p
2 = ¢*(xcosy—ysiny)+e*cosy+ecosy
= ¢*(xcosy—ysiny+2cosy), (2.3)
v _
a—yzze (—xcosy-+ysiny —2cosy). 2.4
Adding equation (2.3) and (2.4), we have
o + o *(xcos siny+2cosy) +e*(—xcosy+ ysiny —2cosy) =0
—+ = =¢(x - —X - =
o y—ysiny y y-+ysiny y

Hence given function v = e*(xcosy — ysiny) is harmonic function.
Now putting x =z and y = 0 in (2.1) and (2.2), we get Y»(z,0) = ze* +¢* and y;(z,0) =0
Hence by Milne-Thomson method, we have

Q) = [ W0 +iva(z0)de+c

= /(O+i(zez+ez))dz+c
i(ze* —e*+¢e*)+c

= ize*+c
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This is the required analytic function.

TRANSFORMATION

For every point (x,y) in the z-plane, the relation w = f(z) defines a corresponding point (u,v) in the
w-plane. We call this transformation or mapping of z-plane into w-plane. If a point zp maps into
the point wg, wy is also known as the image of zg.

m Example 2.19 Transform the rectangular region ABCD in z-plane bounded by x = 1,x=3; y =0
and y = 3. Under the transformation w = z+ (2 +1). .

Solution: Here
w = z+(2+i)
= u+iv x+iy+ (2+1)
= (x—|—2)+i(y+1)

By equating real and imaginary quantities, we have u =x+2andv=y+1.

z-plane | w-plane | z-plane | w-plane
X u=x+2 y v=y+1
1 =1+2=3 0 =0+1=1
3 =3+2=5 3 =3+1=4

Here the lines x = 1,x = 3; y =0 and y = 1 in the z-plane are transformed onto the line u = 3,u =
5;v =1 and v =4 in the w-plane. The region ABCD in z-plane is transformed into the region EF GH
in w-plane.

V
YA 4 H L= 4 G
y=3
3+ D C 3 ™ 0
I [
2T ~ ™ 2 S S
I ;'( Ans.
4 X E
1 1 v=1 F
- ® X ——————>
0 y=03 O 1 2 3 4 5 u
s Example 2.20 Transform the curve X2 — y2 = 4 under the mapping w = 2. n
Solution.
w = 7
— utiv = (x+iy)?
= x> —y*+2ixy

This gives u = x> —y? and v = 2xy.

Image of the curve x*> — y?> = 4 is a straight line, u = 4 parallel to the v-axis in w-plane.
Ans.
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Table of (x, y) and (u, v)
X 2 25 3 35 - 45 5
3 0 1.5 22 £29 £35 41 406
p=tyx" -
n=x>-y° 4 4 4 4 4 4 4
v=1Ixy 0 £75 132 £203 £ 28 £369 | £46
Y 4 VoA
5 50 [— (4, 46)
4 — 40 — (4, 36.9)
3 50 |- (4. 28)
(4, 20.3)
2 - 20 [— (4, 13.2)
1 10 |— 4, 7.5)
o o 1 L 1 1
X 2 3 5 6 U
— 1 —10 4, —7.5)
_s o b (4. -13.2)
-3 —30 [— Eﬁ: :3833)
—al- —40 - (4, —36.9)
-5 — 50 |— w-plane (4.— 46)
\!Y' \fV;

2.16  CONFORMAL TRANSFORMATION

Let two curves C1, (> in the z-plane intersect at the point Zy and the corresponding curve Cy, C5
in the w-plane intersect at f(z9). If the angle of intersection of the curves at z in z-plane is
the same as the angle of intersection of the curves of w-plane at f(zy) in magnitude and sense,
then the transformation is called conformal.
If only the magnitude of the angle is preserved, transformation is Isogonal.

(z-plane)

Fig. 380.

flzD}

(w-plane)

Curves C,; and C; and their respective images

C7 and C% under a conformal mapping w = f(z)
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Theorem 2.16.1 If f(z) is analytic, mapping is conformal.

Theorem 2.16.2 Prove that an analytic function f(z) ceases to be conformal at the points where

f'(z)=0.

Note 1. The point at which f'(z) = 0 is called a critical point of the transformation.

2
= Example 2.21 If u =2x*+y> and v = r , show that the curves u = constant and v = constant

X
cut orthogonally at all intersections but that the transformation w = u + iv is not conformal. "

Solution: For the curve, 2x% + y2 =u
2x* +y* = constant = c|(say) (2.5)

Differentiating (2.5), we get

d d -2
4x—|—2yd—z =0 = d—z = TX = m(say) (2.6)
2

For the curve, Y constant = ¢; (say),
X

y2=cx 2.7)

Differentiating (2.7), we get
dy dy o _y 1 _y
ydx = dx 2y «x X 2y 2x ma(say) 28)

For orthogonal, from equation (2.6) and (2.8), we have

() (3)-

Hence, two curves cut orthogonally.
However, since

du du dv y? dv 2y
_— = ’—:2’—:—— d—:—
o dy e e dy x

The Cauchy-Riemann equations are not satisfied by « and v.
Hence, the function u + iv is not analytic. So, the transformation is not conformal.
= Example 2.22 For the conformal transformation w = z2, show that m

a. The coefficient of magnification at z =2+ is 2/5.
b. The angle of rotation at z = 2 +i is tan~'(0.5).
c. The coefficient of magnification at z =141 is 2V2.

T
d. The angle of rotation at z =1+ is 1
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Solution:

w=fkz) = 2
= fia) = 2
= fl2+i) = 202+i)=4+2i

(a.) Coefficient of magnification at z =2 +iis | f/(2+i)| = |4+ 2i] = 2V/5.
2
(b) Angle of rotation at z =2 +i is ampf'(2+i) = (4 +2i) = tan~! <4) =tan1(0.5).

and f'(1+i)=2(1+i)=2+2i

(¢) The coefficient of magnification at z = 1 +iis |f'(1 +i)| = [2+2i] = V4 +4 =212
2

(d) The angle of rotation at z = 1+ is amp.f'(1+i) =2 +2i =tan™! <2> = g

BILINEAR TRANSFORMATION (Mobius Transformation)
Definition 2.17.1 BILINEAR TRANSFORMATION (Mobius Transformation) The trans-
formation of the form
" az+b
cz+d’

is called bilinear transformation.

provided ad — bc # 0.

Definition 2.17.2 INVARIANT POINTS OF BILINEAR TRANSFORMATION We know
that

az+b
w=——,
cz+d

If z maps into itself, then w =z

7az+b
= cz+d’

(2.9)

Roots of (2.9) are the invariants or fixed points of the bilinear transformation.
If the roots are equal, the bilinear transformation is said to be parabolic.

Definition 2.17.3 CROSS-RATIO If there are four points z;, 22, 23, 24 taken in order, then the
ratio

(Z] —Zz)(Zs —24)
(Zz —Z3)(Z4—Z1)’

is called the cross-ratio of z;, 22, 23, Z4-

Theorem 2.17.1 A bilinear transformation preserves cross-ratio of four points i.e.
(w1 —wa)(w3 —wq) (21 —22)(23 —24)

(wa—w3)(wa—w1)  (2—z3)(—2) "

m Example 2.23 Find the bilinear transformation which maps the points z = 1,i,—1 into the points
w =1,0,—i. Hence find the image of |z| < 1. .
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b
Solution: Let the required transformation be w = @t
cz+d
a . b
Zi4 2
w=d d _, , _PiTa (2.10)
| rz+1
d
b
where p = g,q: 7 and r = 2
On substituting the values of z = 1 and corresponding values of w =i in (2.10), we get
=Pt it .11
r+1

Again on substituting the values of z = i and corresponding values of w = 0 in (2.10), we get

_PTD g =0 2.12)
ir+1
Finally, on substituting the values of z = —1 and corresponding values of w = —i in (2.10), we get
=P i (2.13)
—r+1

Solving equation (2.11), (2.12) and (2.13, we get p=i,q =1 and r = —i.
Now substitute the value of p, ¢ and r in (2.10), we get the required Bilinear transformation as

iz+1

= : 2.14
v —iz+1 ( )
. s iz+1 . . .
To find the image of |z| < 1 under the Bilinear map w = — T we rewrite the given equation in
—iz
the terms of real and imaginary parts as
Wiy — i(x+iy)+1  ix—y+1  (ix—y+1D(ix+y+1) —x*—y*+1 —|—2ix<2.15)

—i(x+iy)+1  —ix+y+1 (—ix+y+1D)@x+y+1) 24+ (y+1)2

Equating real parts we get

22
—x- =y +1

U= ——"—. 2.16

x4 (y+1)? (2.16)

But we have, |z] <1 = x> +y?> <1 = 0 < | —x*> —y?. Thus equation (2.16) shows that u > 0.

In other words the open disk in z-plane maps into open upper half of w-plane.
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2.18 Line Integral

83

Line Integral

If f(z) = u(x,y) +iv(x,y), then since dz = dx + idy,
we have

Jof(2)dz= [o(u+iv)(dx+idy) = |-(udx —vdy)+i [-(vdx+ udy), where C is closed path,

which shows that the evaluation of the line integral of a complex function can be reduced to the

evaluation of two line integrals of real functions.

= Example 2.24 Evaluate [; " ()2dz along the real axis from z = 0 to z = 2 and then along a line

parallel to y-axis fromz=2toz =2+1.

Solution: [;1(2)2dz = [y (x — iy)*(dx + idy)

= Jou(x)?dx + [,5(2 — iy)%idy Since [Along OA,y = v
0,dy =0, x varies 0 to 2. Along AB,x = 2,dx =0 and

y varies 0 to 1] 1
= [3(x)2dx + [y (2 — iy)idy

= 02x2dx + ifol (4 —4iy —y*)dy

6]

x32 yz y3 1 8 11
== || 4y —4i— — — =—+ild4—4i-—=
5, il (o9 )] <5iaesn-5)

Which is the required value of the given integral.

oy
Y
>

1
3 (14+114).

» Example 2.25 Evaluate [, " (x® — iy)dz along the path

(@ y=x (b)) y=x.

Solution: (a) Along the line y = x,

dy = dx so that dz = dx+idy Ya
dz =dx+idx = (1+1i)dx

By putting y = x and dz = (1 +i)dx], we have
Jo (2 = iy)dz = [y (x* — ix)dx &

22 1312 1 A
I E S ol RRNS  S bl S ;
(—I—z)[3 12]0 (—I—z)[3 12} 6(5 i) 3

Which is the required value of the given integral.

P(1, 1)

(b) Along the parabola y = x?, dy = 2xdx so that dz = dx + idy
= dz = dx+2ixdx = (14 2ix)dx and x varies from O to 1.
Jo T2 —iy)dz = [y (8% — ix?) (1 4 2ix)dx
Nl e NESE RUEEENNS £ I D
= (1—1i) fy (x* +2ix")dx = (1 —1i) [3 +2l4:|0 =(1-1) [3+214] = 6(5+Z).
Which is the required value of the given integral.
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= Example 2.26 Evaluate [ (z—a)"dz where C is the circle with centre a and r. Discuss the case

whenn = —1. n
Solution: The equation of cir-

ce C is |z —4a = r o z —a =

rei®

where 6 varies from 0 to 2m. so that dz =

rie'®do

By putting z —a = re® and dz = rie'®do, we

have
Jo(z—a)'dz = [{™(re'®)"rie®dO
— fOzﬂ Ft,i(n0+0) 19 — jntl fOQﬂ £nt1)8 gg

o, [eftnrne S| " it
=i = e 1] = )27 +isi 127 —1
" i(n+1) o n+1 le ] n+1[005(n+ )2m+isin(n+1)2w — 1]
rn+1
= [14i0—1]=0.
n+1
Whenn = —1,
1 2 1 0.4 27 . .
Je(z=a)'dz = fo ——dz = Jy" —rie?d0 = [;"id6 = 2ni

Which is the required value of the given integral.

IMPORTANT DEFINITIONS
Definition 2.19.1 Simply connected Region: A connected region is said to be a simply con-
nected if all the interior points of a closed curve C drawn in the region D are the points of the
region D.

one curve. We can convert a multi-connected region into a simply connected one, by giving it

| Definition 2.19.2 Multi-Connected Region: Multi-connected region is bounded by more than
one or more cuts.

Definition 2.19.3 A function f(z) is said to be meromorphic in a region R if it is analytic in the
region R except at a finite number of poles.

B Suoml

c,

Multi-Connected Region Simply Connected Region Simply Connected Region
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Definition 2.19.4 Single-valued and Multi-valued function: If a function has only one value
for a given value of z, then it is a single valued function.

For example f(z) = 7>

If a function has more than one value, it is known as multi-valued function,
For example f(z) = \/z
|| Definition 2.19.5 Jordan arc: A continuous arc without multiple points is called a Jordan arc.

Definition 2.19.6 Regular arc: If the derivatives of the given function are also continuous in the
given range, then the arc is called a regular arc.

Definition 2.19.7 Contour: A contour is a Jordan curve consisting of continuous chain of a
finite number of regular arcs.

The contour is said to be closed if the starting point A of the arc coincides with the end point B of
the last arc.

Definition 2.19.8 Zeros of an Analytic function: The value of z for which the analytic function
f(z) becomes zero is said to be the zero of f(z).

For example,
(1) Zeros of 2 —3z+2arez= 1 and z = 2.

(2) Zeros of cosz is =(2n — l)g, wheren =1,2,3,...

Theorem 2.19.1 CAUCHY’S INTEGRAL THEOREM-I If a function f(z) is analytic and its
derivative f’(z) continuous at all points inside and on a simple closed curve C, then

Jof(z)dz=0

Proof: See the proof at page no. 548 in the book written by H.K.Dass
Note: If there is no pole inside and on the contour then the value of the integral of the function is
Zero.

322 4+7z+1

= Example 2.27 Find the integral [ 1

1
dz where C is the circle |z| = 3 .

Solution: Poles of the integrand are given by putting the

denominator equal to zero.i.e. ' T
1
z+1=0 = z=—1 The given circle |z| = 3 with centre
1 1
at z = 0 and radius 3 does not enclose any singularity of [ \2 .

3247741
fcﬂdzzo_

X e—0 »
the given function. Therefore by Cauchy Integral Formula -1 !j X
z+1
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Theorem 2.19.2 CAUCHY’S INTEGRAL THEOREM-II If f(z) is analytic within and on a
closed curve C, and if a is any point within C, then, then

i e L= 1@

, where C is any closed curve in R surrounding the point z = a.

Proof: See the proof at page no. 551 in the book written by H.K.Dass

1
= Example 2.28 Evaluate the integral - o 9dz where C is the circle [z+3i| =2 and [z| =5. =

1
Solution: Here f(z) = 250
z
The poles of f (z) can be determined by equating the de- rY
nominator equal to zero. 5 >
() 2249 =0 = z=43i. Pole at z = —3i lies in the
1 1
i ircle C. dz= = .
given circle C. [ f(z)dz = | 259 Je 303
1/(z—3i) [ 1 ] -3i
=27
=l (z+3i) (z—3i)],__5 ,
27i ! i
= 1 —_— = ——.
(—3i—3i) 3

(ii.) 224+9=0 — 7= +3i. Pole at z = —3i lies in the
1

given circle C. [ f(z)dz = | 259" Ic 33 Ay

o 1/(z—30) 1/(z+3i)

e e “0a
1

+27L’l[

>xv

(z+3i) ] =3i 0
] C,0-3i

el
[

(303 % m [<3zi3i>

Theorem 2.19.3 CAUCHY’S INTEGRAL FORMULA FOR THE DERIVATIVE OF AN
ANALYTIC FUNCTION If a function f(z) is analytic in a region R, then its derivative at any
point z = a of R is also analytic in R, and is given by,

f@)
-2’

Proof: See the proof at page no. 550 in the book written by H.K.Dass

flla)=5—Jc

271'1
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CAUCHY’S INTEGRAL FORMULA FOR THE DERIVATIVE OF OR-
DER n OF AN ANALYTIC FUNCTION If a function f(z) is analytic in a region R, then its
derivative of order n at any point z = a of R is also analytic in R, and is given by,

f@)

n — —
e3z
= Example 2.29 Find the integral |- Wdz, where C is the square with vertices at =1,+i. m
z—log
3z
Solution: Here |- mdz Poles of the integrand
are given by putting the denominator equal to zero.i.e.
(z—log2)* =0 = z=1log?2. The integral has a pole of . D —C_,
fourth order. e o
et 27[1 m
fC 10g2)4 - f [ ]z log2 X< ol 2=t > X
277:1 ‘
_7333 [ ]Z log?2 z=-1-i z=1-i
= 971'16310*‘52 97iele?’ = 9rieloe8 = 727i. A g

sin w72 4 cos w72

(z—=1)(z—-2)

circle |z| = 3. .

= Example 2.30 Use Cauchy integral formula to evaluate |- dz, where C is the

2 2
sin 7z~ +cos T
Solution: Here | e *_dz Poles of the in-

(z—=1)(z—-2)

tegrand are given by putting the denominator equal to
zero.i.e.

(z—1)(z—2) =0 = z=1,2. The integral has two pole
at z=1,2. The given circle |z| = 3 with centre at z =0
and radius 3 encloses both the poles z =1, and z = 2.

sin w72 + cos 17>

dz
fe e
. 2 2 _ 2 o 2 2 _ 1
s (sinmz® +coswz%)/(z )dz+fc (sinmz® +cosz?)/(z )dZ
‘ (z=1) ? (z-2)
i [(sinnzz—l—cosﬂzz)] ) _[(sinnz2+cosn’z2)}
(Z - 2) =1 (Z - 1) 7=2
.| (sin +cos ) .[ (sin4m +cos4m) -1 1 )
m{ (1—2) +2mi 2= i ( 1 +2mi 1 i
Which is the required value of the given integral.
3iz
= Example 2.31 Use Cauchy integral formula to evaluate |- mdz, where C is the circle
Z

|Z—7I|=3.2. u
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3iz

e
Solution: Here [ ———5dz, where Cis acircle [z— 7| =
7+ )

3.2 with centre 7 and radius 3.2. Poles of the integrand '
are given by putting the denominator equal to zero.i.e.
(z+7)?=0 = z=—=n,—n,—x. The integral has a
pole of order 3 at z = 7. But there is no pole within C. By X4— - »X
3iz T T
e
Cauchy Integral Formula [ ——=dz=0.
v mee Je (z+m)3
Which is the required value of the given integral. v
Taylor's Theorem
Theorem: Suppose that a function f(z) is analytic
throughout a disk |z —a| < R, centered at a and with radius
R. Then f(z) has the power series representation P
f(2) =YX oan(z—a)" (lz=al <R) St /
/ \
where { Ry |
| 4 ]
n \ /
a,,—f (@) (n=0,1,2,...). \ /
n! o~ R
_ _ A _\n
ie f(z)=f(a)+ ¢ 1 'a)f’(a) + <Z2'a>f”(a) +.t (Zn,a)f”(a) + .... This series is called

Taylor’s Series of f(z) about z =a.

2 n
If a = 0, then the series f(z) = £(0) + % £(0)+ % £7(0) 4 ...+ % £7(0) + ... is called Maclaurin’s
Series of f(z) about z = 0. ' ' '

1
Example 2.32 Obtain the Taylor’ i i f the functi =
= Examp ain the Taylor’s series expansion of the function f(z) 2 (2212
about z = 0. n
1
Solution: Here the given function is = . This function can be written as
& I = a2t
1 1 1 1 1

= ~ =75: + . <= +1)~ 1+ —(z+2i)~!

&= ey - e nes) T 0omerw - e EtY T o et

1 _ 1 z\~!
e le21(1—21') <1+27>

i) 1-z+22-2+.. ]+ ——

After simplifying we get the required expansion.
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Theorem: Suppose that a function f(z) is analytic
throughout an annular domain R; < |z—a| < Ry , cen-
tered at a, and let C denote any positively oriented simple
closed contour around a and lying in that domain. Then, at
each point in the domain, f(z) has the series representation /

f@) =Y oan(z—a)"+ X7 1 bu(z—a)™" \
(Rl < |Z*a| < Rz) \

ol / X
where -
1 f(z) _
n= 5l (Z_a)nﬂdz (n=0,1,2,..).
and
1
bnzifCLdZ (n:1,2,3,...).

2.21 Laurent’s Theorem
Definition 2.21.1 Laurent’s series: An expansion of the function f(z) in the form

f(Z) = ZOO:O an(z _a)n +Z:z°:1 bn(z - a)_n

is called Laurent’s series expansion. The part };”_; b,(z—a)™" is called Principal Part of the
function f(z) atz=0.

1
= Example 2.33 Obtain the Laurent’s series expansion of the function f(z) = ———————, which
(z+1)(z+3)

is valid for

(a) 1<zl <3 () |z| >3 (c) 0<|z+1] <2 .

1
Solution: Here the given function is f(z) = ——————. Resolving this function into partial
(z+1)(z+3)

fractions, we get

1 1 1 1
0= e 2 (G ms)

(a) For 1 < |z] < 3:
Since |z| > 1 and |z| < 3, the above fractions can be written as

-3 o)A ()3 )
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(b) For |z| > 3:

1 1 1 1 1 1 1
1@=5(5-25)=» -5 .
2\z+1 z+3 2z\1+1/z) 2z\1+3/z
1 I 3\ !
=—(1+=) —=—(1+32) .
22( z> 2z< z>
1 1 1 1 1
=l 5+ -1
2Z|: z 22z ] 2Z|:

L L U U B 11 3+32 33+
20z 2B AT 20z 2B AT
3

(¢) For [z4 1| < 2:

f()_lll_l(l_ 1 )
D7o\er1 z43) T 2\z41 z+142);

1 1 z+1\ ! 1 1 2+1 (41?2 (z+1)
— _ — 1_'_7 =— 9 /@~ —+ — + ...
2(z+1) 4 % 2(z+1) 4 2 4 8
_;_l+z+l_(z+l)2+(z+l)3_
S 2(z+1) 4 8 16 32
= Example 2.34 Expands f(z) = < Jin I<lg <2 .

(22— 1)(z*+4)

Solution: Here the given function is f(z) = <

(Z—-1)(z2+4)
Resolving this function into partial fractions, we get

Z 1 1
f) = 5 <z2— 1 22+4>
Since |z|? > 1 and |z|*> < 4, the above fractions can be written as
[EA U W T A W S WU B S A
52\1—1/z2) 54\1+z2/4) 57 z 20 4

1 1 1 1 z 2 0
=—|ltg+tg+oto| - |I-F+ 55+
7z 7

, where 1 < |z] <2or 1 < |z]® < 4.
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Which is the Laurent’s expansion of f(z)in 1 < |z| < 2.
Tz—2

Example 2.35 Expands f(z) = —————, In 1<|z+1| <3.
u p p f( ) (Z+1)Z(Z—2) | | u
Solution: Let z+ 1 = u, then the given function is f(z) Te2 be writt
: Let z+ 1 = u, then the given function is f(z) = ——————— can be written as
& (z+ 1)z(z—2)
Tu—1)—2 Tu—9
flu) = (u=1) = ! , where 1 < |u| < 3. Resolving this function into

u(u—1D(wu—1-2) wu(u—1)(u—3)
partial fractions, we get

3 1 2
u u—1 u-3

Since |u| > 1 and |u| < 3, the above fractions can be written as

3L 0 N 12 N3 1! 2<1 u>—1
u u\l—1/u 3\u/3-1) u u u 3 3

S R OO S S R B (OB L
uou u uwr w3 3032 37

2 1 1 1 2 u Wl
:—*4‘*24‘*34‘*4-1—...—* l4+-+—=+=—=+...
u u

u u 3 3 32 33
2 N 1 N 1 N 1 N 2 1+z+1+(z+1)2+(z+1)3+
ozl (z )2 (21 (DT 3 3 9 27 )

Which is the Laurent’s expansion of f(z)in 1 < [z4+ 1| < 3.

SINGULARITIES OF ANALYTIC FUNCTION
Definition 2.22.1 A zero of analytic function f(z) is the value of z for which f(z) = 0.

Definition 2.22.2 SINGULAR POINT: A point at which a function f(z) is not analytic is
known as a singular point or singularity of the function.

For Example: The function has a singular pointatz—a =0 or z =a.

Z—a
Definition 2.22.3 Isolated singular point: If z = a is a singularity of f(z) and if there is no
other singularity in the neighborhood of the point z = a, then z = a is said to be an isolated
singularity of the function f(z); otherwise it is called non-isolated.

For Example: The function has a singular point at z = a, b. Here in the neighborhood

1
(z—a)(z—b)
of a and b, there does not exits any other singularities. Hence a and b are isolated singularities.

b4
Example of non-isolated singularity: The function f(z) = cosec () is not analytic at the points
z
(T . .. T . . . . 111
where sin | — | = 0 i.e., at the points — = n7 i.e., the points z = — i.e., the points z =1, -, =, — ...
Z Z n 2°'3°4

Here z = 0 is the limit points of z = —. Hence z = 0 is the non-isolated singularity of the function
n
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F(2) = cosec (

singularities z =

SRS

) because in the neighbourhood of z = 0, there are infinite number of other

1
—, when n is very large.

n

Definition 2.22.4 Pole: If the principle part of the function f(z) at z = a in Laurent’s expansion
has only finite number of terms (say m), we say f(z) has pole of order m at z = a. or

if 3 a +ve integer m such that

lim(z —a)" f(z) = k(constant) # 0.,

z—a

then we say that f(z) has a pole of order m at z = a.
1
(z—1)%(z+2)

3r
2. tanz and secz has simple poles at 7z = j:E, j:7,

For Example:1. The function f(z) = has a pole at z =1 of order 2 and has a pole

at z = —2 of order 5.

3. cotz and cosecz has simple poles at z =0, £7w, 27, ....

Definition 2.22.5 Essential Singularities: If the principle part of f(z) at z = a in Laurent’s
series expansion has infinite number of terms, then we say that z = a is an essential singularities

of f(z). or

If lim f(z) does not exist, then we say that z = a is essential singularities f(z) .
Z—a

For Example:1. The function f(z) = e/ has an essential singularities at z = 0 because its expansion
aboutz =0
1 1 1
l/z _ — 4
1+- + 22 + 313

has infinite number of terms in negative powers of z.

+ o3

2. The function f(z) = sin ( has an essential singularities at z = a because its expansion
Z—a

aboutz =a

. 1 1 1 N 1
sin = — —
z—a z—a 3!(z—a)® Sl(z—a)
has infinite number of terms in negative powers of z — a.

Definition 2.22.6 Removable Singularities: If the principle part of f(z) at z = a in Laurent’s
series expansion has no terms, then we say that z = a is a removable singularities of f(z). or
z=a is said to be removable singularities if lim f(z) exist finitely.

z—a

. sinz . . . :
For Example:1. The function f(z) = —— has removal singularities at z = 0 because its expansion
2

about z =10
sinz 1 1
it A
- z + 5%
has no number of terms in negative powers of z.
2. The function f(z) = S

z=0

* has a removable singularities at z = 0 because its expansion about
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z—sing 1 2 7 z 2
Z2 :Z2|:Z—<Z—3‘+5‘+>:|:—+

has no number of terms in negative powers of z.

= Example 2.36 Find out the zeros and discuss the nature of the singularities of
z—=2(. 1
z7) = —5— | sin .

Solution: Poles of f(z) are given by equating to zero the denominator of f(z) i.e. z=01is a pole
of order two.

1
zeros of f(z) are given by equating to zero the numerator of f(z) i.e., (z—2)sin (1> =0
7—

1
— Either z—2 = 0 or sin <1> =0
7—

1
= z=2and — =n7w
z—1

1
— z=2andz= 1+—n,n::|:l,:|:2,:|:3,...
n

1
Thus, z = 2 is a simple zero. The limit point of the zeros z =1+ - are given by z=1. Hence z =1
n

is an isolated essential singularity.

DEFINITION OF THE RESIDUE AT A POLE

Let z = a be a pole of order m of a function f(z) and C; circle
of radius r with centre at z = a which does not contain any
other singularities except at z = a then f(z) is analytic within
the annulus r < |z —a| < R can be expanded within the annulus.

Laurent’s series: ‘

f@)=Yran(z—a)"+ Y, by(z—a)™", where

Annulus

)

_ A AR

and

|z—a| = r being the circle Cj.
Particularly,

1
b= 5 oSG,

The coefficient b, is called residue of f(z) at the pole z = a. It is denoted by symbol Res.(z =a) = b;.
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RESIDUE AT INFINITY
Residue of f(z) at z = oo is defined as
1
o e f(E)d,

where the integration is taken round C in anti-clockwise direction. where C is a large circle containing
all finite singularities of f(z).

METHOD OF FINDING RESIDUES

a. Residue at simple pole: (i.) If f(z) has a simple pole at z = a, then

Res.f(a) =lim(z—a)f(z)

Z—a

(ii.) If f(z) is of the form f(z) = :f,(é)) where y(a) = 0 but ¢(a) # 0. then

Res.(z=a) =

b. Residue at a pole of order n. If f(z) has a pole of order n at z = a, then

n—1
Res.(z=a)= (n—ll)' {ai”l [(z— a)”f(z)]}

Z=a
c. Residue at a pole z = a of any order (simple or of order »)
Resf(a) = coefficient of o

1
Rule. Put z = a+1 in the function f(z), expand it in powers of 7. Coefficient of " is the

residue of f(z) at z = a.
d. Residue at a pole 7 =

Resf(z=o0) = Zlgg [—2f(2)].

1
or The residue of f(z) at infinity = T Jo f(2)dz.
i
1
m Example 2.37 Find the residue at z = 0 of zcos —. n
z

1
Solution: Expanding the function in powers of —, we have
Z

1 1 1 1

zcos— =z |1 — :Z—T!Z—FFZS—...

—_— ...
4 2122 414
This is the Laurent’s expansion about z = 0.

1
The coefficient of — is —5 So the residue of zcos— atz=101s —5
Z Z

3
2-1

= Example 2.38 Find the residue of f(z) = at z = oo, .
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Solution: We have, f(z) = 2z 7
2—
2 1\ 11 11
= ——=z(1-5] =z(l+g+5+.)=z+-+5+..
5 < 1 > z 2z 0z
|\ 1=
Z
: e : 1
Residue at infinity =-Coefficient of — = —1.
Z
2
= Example 2.39 Evaluate the residues of f(z) = atz=1,2,3 and oo and show
(z—1D(z—2)(z—3)
that their sum is zero. m

ZZ

Solution: Here f(z) = - 1)(z=2)(z=3)

. The poles of f(z) are determined by putting the

denominator equal to zero.
(z—1)(z—2)(z—3)=0 = z=1,2,3
Residue of f(z) at (z=1)

2 2
Z Z 1
=li —1 =l —1 =lim—r— = -
limz= /@) =lmz= ) == ~ M =2e=3 2
Again, Residue of f(z) at (z=2)
2 2
—lim(z—2)f(z) = lim(z —2 —lm—— % 4
lim(z=2)/() =M =2) == M3
Also, Residue of f(z) at (z=3)
2 2
: . Z . b4 9
=lim(z— 3)f(z) = lim(z - 3 =lim—— =~
Zgl%(z (@) Zgr%(z )(z—l)(z—2)(z—3) 3 (z—=1)(z—2) 2
Finally, Residue of f(z) at (z = )
L L (—2)2 L —1 _
R e T R CHICHICHE i
z z z
Sum of the residues at all the poles of f(z) = 3 4+ g — 1 =0. Hence, the sum of the residues is
zero.
1
» Example 2.40 Find the residue of f(z) = @251y atz=1i. .

Solution: Here f(z) = 5- The poles of f (z) are determined by putting denominator

1
(22+1)

equal to zero. i.e.
(Z2+1)P=0= (z—i)3(z+i)’=0 = z=+i

Here, z = i is a pole of order 3 of f(z).
Residue at z =i
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-l [ e L s i [

1| 3x4 1126 —=3i
20 (z+i)° ], 2(i+i)® 2% 16
. . . .. —3i
Hence, the residue of the given function at z =i is 16
= Example 2.41 Determine the poles and residue at each pole of the function f(z) = cotz. .

Solution: Here f(z) = cotz = €2 The poles of the function f(z) are given by
sinz

sing=0 = z=nn, wheren =0,4+1,£2,43...

COSZ COSZ

Residue of f(z) at z=nm is = =1. Res.(z=a) =
d (sinz) 082 v (a)
dz




Definition 3.0.1 A polynomial equation of the form

Py(x) = aX" +ap 1x" ' a, oxX" 2. taix+ag=0
is called an algebraic equation.

For Example: 3x° +2x° — x> +35=0,x*+5x> +7=0, —2x*> = 3* +4 =0,

Definition 3.0.2 An equation which contains polynomials, exponential functions, logarithmic
functions, trigonometric functions etc. is called a transcendental equation.

For Example: xe* —2x = 0, xtanx — logx = 4, sin’> x+ cosx = 0 are transcendental equations.

Definition 3.0.3 Root/zero: A number ¢, for which f(a) = 0 is called a root of the equation
f(x) =0, or a zero of f(x). Geometrically, a root of an equation f(x) = 0 is the value of x at
which the graph of the equation y = f(x) intersects the x-axis.

f(x) 4

<Y
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Theorem 3.0.1 Suppose the function f is continuous in [a,b] and f is differentiable on (a,b). If
f(a) = f(b), then a number c in (a,b) exists with f'(c) = 0.

Vi

Theorem 3.0.2 Intermediate Value Theorem: If f(x) is continuous on some interval [a,b] and
f(a)f(b) <0, then the equation f(x) = 0 has at least one real root or an odd number of real roots
in the interval (a,b).

= Example 3.1 Show that x> —2x* 4 3x?> — 1 = 0 has a solution in the interval (0, 1). "

Solution: Consider the function defined by x> — 2x> +3x%> — 1 = 0. The function f is continuous
on [0,1]. In addition, Here f(0) = —1 < 0 and f(1) = 1 > 0. Therefore by, Intermediate Value
Theorem there exist a number x with 0 < x < 1, for which x> — 2x3 4+ 3x> — 1 = 0. Hence the given
function has the solution in the interval (0, 1).

Bisection Method This method is applicable for numerically solving the equation f(x) = 0 for
the real variable x, where f is a continuous function defined on an interval [a,b] and f(a) and f(D)
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have opposite signs. Then by the intermediate value theorem, the continuous function f must have
at least one root in the interval (a,b). Now at each step, this method divides the interval in two
interval by computing the midpoint ¢ = (a4 b)/2 of the interval and the value of the function f
at that point c. Unless c is itself a root, there are now only two possibilities: either f(a) and f(c)
have opposite signs or f(c) and f(b) have opposite signs. The method selects the subinterval that is
guaranteed to be a root in the new interval. The process is continued until the interval is sufficiently
small. Explicitly, if f(a) and f(c) have opposite signs, then the method sets ¢ as the new value for b,
and if f(b) and f(c) have opposite signs then the method sets ¢ as the new value for a. (If f(c) =0
then ¢ may be taken as the solution and the process stops.) In both cases, the new f(a) and f(b)
have opposite signs, so the method is applicable to this smaller interval.

= Example 3.2 Find the root of the equation x* —x — 1 = 0 by bisection method up to two places of
decimal. -

Solution: Here f(x) = x> —x— 1. Let xo = 0 so that f(xo = 0) = —1 < 0. and x; = 2 so that
f(x; =2)=(2)*—(2) — 1 =5 > 0. Thus by intermediate value theorem the roots lies in the interval
(0,2). By using bisection method, the first approximation is

_XO+X1_0+2_
T2 2
Now f(xs = 1) = (1)* = (1) — 1 = —1 < 0. Since f(x; =2)f(x2 = 1) = 5.(~1) = —5 < 0. There-

fore the roots lies in the interval (x;,x)i.e.(1,2). Again by using bisection method, the second
approximation is

1

X2

_x2+x1 o 1+2_3

2 2

X3

Now f(x3 = 2) = (2)3 — <2> 1= % > 0. Since f(xp =1)f(x3 =3/2) = (—1).(7/8) =

—7/8 < 0. Therefore the roots lies in the interval (x;,x3)i.e.(1,3/2). Again by using bisection
method, the third approximation is
X2 +x3 1+3/2 B 5

4 2 2 4

4 4 4 64
133/512 > 0. Therefore the roots lies in the interval (x4,x3)i.e.(5/4,3/2). Repeating this process we

getxs =11/8,x6 =21/16,x; =43/32,x3 = 85/64. This process will be continue until the difference
between last two approximation is less than 0.005.

Now f (m _ 5) _ (5>3— <5> C 1= =19 0 Since flxa = 5/4)f(xs = 3/2) = (—19/64).(7/8) =

= Example 3.3 Using bisection method, find the root of the equation 3x — /1 4 sinx = 0. "

Solution: Here f(x) = 3x—+/1+sinx. Let xo = 0 so that f(xo =0) = —1 <0.and x; = 1 so
that f(x; =1) =3(1) — /1 +sin(1) =3 —+/1+0.84 =3 — 1.35 = 1.65 > 0. Thus by intermediate
value theorem the roots lies in the interval (0,1). By using bisection method, the first approximation
is

X0 + X1 0+1
= =—=1/2=0.5
2 2 /

X2
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Now f(x; =0.5) =3(0.5) — /1 +sin(0.5) =3 —+/1+0.479 = 1.5—-1.216 = 0.28 > 0. Since
f(xo=0)f(x2=0.5)=(—1)(0.28) = —0.28 < 0. Therefore the roots lies in the interval (x¢,x;)i.e.(0,0.5).
Again by using bisection method, the second approximation is

_X()—i-XQ_O—i-O.S
22

Now f (x3 = 0.25) = 3(0.25) — /1 +sin(0.25) = 0.75 — /T + 0.247 = 0.75— 1.216 = —0.117 < 0.
Since f(x2 = 0.5)f(x3 = 0.25) = (0.28)(—0.117) = —0.33 < 0. Therefore the roots lies in the
interval (x;,x3)i.e.(0.5,0.25). Again by using bisection method, the third approximation is

=0.25

X3

) =+ X3 . 0.5+0.25
2 2

=0.35

X4
Continuing this process we get the required answer.
Quiz

Question 1: What is a continuous function?
Question 2: How the midpoint is calculated in the Bisection method?
Question 3: What is a root of a function?
Question 4: After applying one iteration, by how much did our interval that might contain a zero of
f decrease?

1. Almost half

2. More than half

3. 50%

4. 70%
Regula-Falsi method: At the start of all iterations of the method, we require the interval in which the
root lies. Let the root of the equation f(x) =0, lie in the interval (x;_1,x;), that is, fi_ fx <0, where
f(xk=1) = fi—1, and f(xx) = fx. Then, P(xk—1, fr—1), Q(xx, fx) are points on the curve f(x) = 0.

yll yll

Figure 3.1: Regula-falsi method

Draw a straight line joining the points P and Q. The line PQ is taken as an approximation of the
curve in the interval [x;_1,x;|. The equation of the line PQ is given by

y=fi . _x=x
Ji—1—fk Xj—1—Xk
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The point of intersection of this line PQ with the x—axis is taken as the next approximation to the
root. Setting y = 0, and solving for x, we get

Xk—1—X X —Xp—
X = Xk (f/]z 1_ﬁt>}k—xk (ff-ﬁi:)fk
Thus the (k+ l)th iteration will be

R AT f_xk—lfk—xkfk—l
Hert =8 i feer ) = Ji— fr

This method is also called linear interpolation method or chord method or false position method.

= Example 3.4 Locate the intervals which contain the positive real roots of the equation x> —3x+1 =
0. Obtain these roots correct to three decimal places, using the method of false position. "

Solution: We form the following table of values for the function f(x).

x J[0o[1[2]3
fO 113719

There is one positive real root in the interval (0, 1) and another in the interval (1,2). There is no real
root for x > 2 as f(x) > 0, for all x > 2.

First, we find the root in (0,1). We have xo = 0,x; = 1, fo = f(x0) = f(0) = 1, f1 = f(x1) = f(1) =
—1.

xofi—xifo _ (0)(=1)—-(1)1) 1
= = ==-=05
P Thh T D= 72
Now, f> = f(x2) = f(0.5) = —0.375. Since, £(0)f(0.5) < 0, the root lies in the interval (0,0.5).
_xofa—x2fo  (0)(—0.375)—(0.5)(1)
B e T X () R

Now, f3 = f(x3) = f(0.36364) = —0.04283. Since, f(0)f(0.36364) < 0, the root lies in the interval
(0,0.36364).

L xofi—xmfo _ (0)(~0.04283) — (0.36364)(1)
M (—0.04283) — (1)
Now, fa = f(x4) = £(0.34870) = —0.00370. Since, £(0)£(0.34870) < 0, the root lies in the interval
(0,0.34870).

=0.34870

L wfi—xfy _ (0)(~0.00370) — (0.34870)(1)
" h-f (—0.00370) — (1)
Now, f5 = f(xs) = £(0.34741) = —0.00030. Since, £(0)£(0.34741) < 0, the root lies in the interval
(0,0.34741).

=0.34741

_ xofs —xsfo _ (0)(—0.00030) — (0.34741)(1)
T A f (~0.00030) — (1)
Now, |xg —x5| = |0.34730 — 0.34741| = 0.0001 < 0.0005.
The root has been computed correct to three decimal places. The required root can be taken as
x = x¢ = 0.347306. We may also give the result as 0.347, even though x¢ is more accurate. Note
that the left end point x = 0 is fixed for all iterations.
Now, we compute the root in (1,2). We have

xo = 1,x1 =2, fo = f(x0) = f(1) = =1, fi = f(x1) = f(2) = 3.

= 0.347306
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_xofi—xifo _ (1)B)-@2)(=1)

fi—fo 3)—(=1)
Now, f» = f(x2) = f(1.25) = —0.796875. Since, f(1.25)f(2) < 0, the root lies in the interval
(1.25,2).

=1.25

X2

_xfi—xfa (1.25)(3) —(2)(—0.796875)
A (3) — (—0.796875)
Now, f3 = f(x3) = f(1.407407) = —0.434437. Since, f(1.407407)f(2) < 0, the root lies in the
interval (1.407407,2).

Similarly, we get x4 = 1.482367, x5 = 1.513156, x¢ = 1.525012, x7 = 1.529462, x3 = 1.531116,
x9 = 1.531729, x190 = 1.531956.

Now, |x19 — —1.53179| = 0.000227 < 0.0005.

The root has been computed correct to three decimal places. The required root can be taken as
x =x109 = 1.531956. Note that the right end point x = 2 is fixed for all iterations.

X3 = 1.407407

m Example 3.5 Find the root correct to two decimal places of the equation xe* = cosx, using the
method of false position. "

Solution: Define f(x) = cosx —xe* = 0. We form the following table of values for the function

f().

X 0 1
flx) | 1] -2.17798

A root of the equation lies in the interval (0,1). Let xo = 0,x; = 1. Using the method of false
position, we obtain the following results.

_Xofizxafo _ (0)(=217798) = (){A) _ 567

fi—fo (=2.17798) — (1)
Now, f» = f(x2) = £(0.31467) = 0.51986. Since, f(0.31467)f(1) < 0, the root lies in the interval
(0.31467,1).

X2

_mfi—xifs  (0.31467)(—2.17798) — (1)(0.51986)
- hA-fH (—2.17798) — (0.51986)

Now, f3 = f(x3) = f(0.44673) = 0.20354. Since, f(0.44673) (1) < 0, the root lies in the interval
(0.44673, 1).

=0.44673

_wfi—xfs _ (044673)(~2.17798) — (1)(0:20354) _
- h-f (—2.17798) — (0.20354) v

Now, f1 = f(x4) = £(0.49402) = 0.07079. Since, f(0.49402)f(1) < 0, the root lies in the interval
(0.49402, 1).

Cxfi—xifs (0.49402)(—2.17798) — (1)(0.07079)
- h—fs (—2.17798) — (0.07079)

Now, f5 = f(xs5) = £(0.50995) = 0.02360.. Since, f(0.50995)f(1) < 0, the root lies in the interval
(0.50995,1).

Similarly we get, x¢ = 0.51520, x; = 0.51692.

Now, |x7 — x| =]0.51692 — 0.51520] = 0.00172 < 0.005. The root has been computed correct to
two decimal places. The required root can be taken as x = x7 = 0.51692. Note that the right end
point x = 2 is fixed for all iterations.

=0.50995

X5



3.1 Newton-Raphson method: 103

Quiz

Question 1: Write the method of Regula- falsi method to obtain a root of f(x) =0 ?

Question 2: What is the disadvantage of the Regula- falsi method ?

Question 3: Find the smallest positive root of x = %, correct to two decimal places using Regula-
falsi method ?

Newton-Raphson method:

Let a root of f(x) = 0 lie in the interval (a,b). Let xy be an initial
approximation to the root in this interval. The Newton-Raphson method

A
to find this root is defined by y
xier = — L) brovided () £ 0
f () p
This method is called the Newton-Raphson method or simply the New-
ton’s method. The method is also called the tangent method. o .
0 / X, X, X

Figure 3.2: Newton-
Raphson method

m Example 3.6 Perform four iterations of the Newton’s method to find the smallest positive root of
the equation f(x) = x> —5x+1=0. .

Solution: We have f(0) =1, f(1) = —3. Since, f(0)f(1) < 0, the smallest positive root lies in
the interval (0, 1). Applying the Newton’s method, we obtain
fla) =S+l 25 -1

S 7/ — . k=0,1.2,..
2] 7% B R e Yo

Let xg = 0.5. We have the following results.

231 2(0.53—1
- = =0.176471
3x2-5 3(0.52-5 ’

X1

26 -1 2(0.176471)3 — 1

— - =0.201568

2T 32 57 3(0.176471)7 5 !
233 —1  2(0.201568)° —1

BT 325 3(0.201568)2 5 !
2x3—1  2(0.201640,)° — 1
T 325 3(0.201640,)7 5

Therefore, the root correct to six decimal places is x = 0.201640.
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» Example 3.7 Using Newton-Raphson method solve xlog;ox = 12.34 with xo = 10. "

1
Solution: Here f(x) = xlog,qx — 12.34. Then f’(x) = log,ox+ oo 10— log;yx+0.434294.
0g

e

Applying the Newton’s method, we obtain
fla) xilogox; —12.34  (0.434294)x; +12.34

= L) - . k=0,1,2,..
Tl =T 000 T T logygxe +0.434294  logygxy +0.434294
Let xo = 10. We have the following results.
0.434294)x0+12.34  (0.434294)(10) + 12.34
=t Jo+1234 JIO+12.38 _ 1) 631465,
log %0 +0.434294 log,o 10+ 0.434294
(0.434294)x; +12.34  (0.434294)(11.631465) + 12.34
log,ox1 +0.434294  log,o(11.631465) +0.434294
(043420405, 11234 _ (0.434294)(11.594870) +12.34 oo

T loggx2 +0.434294  log,(11.594870) + 0.434294

We have |x3 —x2| = [11.594854 — 11.594870| = 0.000016. Therefore, We may take x = 11.594854
as the root correct to four decimal places.

m Example 3.8 Derive the Newton’s method for finding 1/N, where N > 0. Hence, find 1/17, using
the initial approximation as (i) 0.05, (ii) 0.15. Do the iterations converge .

1 1 1
Solution: Let x = — = N = —. Define a function f(x) = — — N so that f'(x) = ——.
X X
Applying the Newton’s method, we obtain
! N
Xkt 1 S 1.0 N
e

ZXkJr[Xk—NX%] =2xk—Nx,%, k=0,1,2,...

2
Xk

(i) With N = 17, and xp = 0.05, we obtain the sequence of approximations
x1 = 2x9 — Nx3 = 2(0.05) — 17(0.05)% = 0.0575.
x2 = 2x1 — Nx3 = 2(0.0575) — 17(0.0575)? = 0.058794.
x3 = 2x7 — Nx3 = 2(0.058794) — 17(0.058794)% = 0.058823.

x4 = 2x3 — Nx? = 2(0.058823) — 17(0.058823) = 0.058823.

Since, |x4 —x3| = 0, the iterations converge to the root. The required root is 0.058823.
(ii) With N = 17, and xo = 0.15, we obtain the sequence of approximations

x1 = 2xg — Nx3 = 2(0.15) — 17(0.15)% = —0.0825.
Xy = 2x1 — Nx} = 2(—0.0825.) — 17(—0.0825.)% = —0.280706.

X3 = 2x, — Na2 = 2(—0.280706) — 17(—0.280706)* = —1.900942.
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x4 = 2x3 — Nx3 = 2(—1.900942) — 17(—1.900942)? = —65.23275.

We find that x; — —oo as k increases. Therefore, the iterations diverge very fast. This shows the
importance of choosing a proper initial approximation.

= Example 3.9 Derive the Newton’s method for finding the ¢ root of a positive number N, N'/4,
where N > 0,q > 0. Hence, compute 17'/3 correct to four decimal places, assuming the initial
approximation as xy = 2. "

Solution: Let x = N'/9 —> N = x9. Define a function f(x) = x? — N so that f'(x) = gx4~".
Applying the Newton’s method, we obtain

1-N —x{+N
X1 = X — f,(xk) :Xk—xk = (4= ) k=0,1,2,...
[ () gx?! gx~!
For computing 17'/3, we have g = 3 and N = 17. Hence, the method becomes

B-1)xg+17 25 +17

Xip1 = T T A k=0,1,2,...
With xg = 2, we obtain the following results.
- 2x83)—%17 _ 2(1)(32;17 275,
o Zx;—l—%ﬂ _ 2(23.(7;)%;17 _ 2582645,
R
o 23+ 17 2(2.571332)% 417 571080,

3¢ 3(2.571332)2

Since, x3| = [2.571282 — 2.571332| = 0.00005., We may take x = 2.571282 as the required
root correct to four decimal places.

Quiz

Question 1: The Newton-Raphson method formula for finding the square root of a real number N
from the equation x> — N = 0 is,

Xi
I xip1= 3
3x;
2. Xip1= 7
N
3. Xi+1 ( ;)

—m\

4, Xi+1 = (3)6, g)

Question 2: Evaluate v/ 142 , correct to three decimal places ?
Question 3: Write an iteration formula for finding the value of 1/N, where N is a real number.?



106 Chapter 3. Numerical Methods

3.2 Difference Operator

3.2.1 Interpolation with equally spaced data

Let the data (x;, f(x;)) be given with uniform spacing, that is, the nodal points are given by x; =
xo+ih,i=0,1,2,...,n. Now we define several finite difference operators and relation between these
finite difference operators.

Notation: We use the following notations as follows:

Xo,X| = X0+ h,x» = x9 + 2h,...,x; = xo + ih, and

fo=fx0), fi = f(x1), o= f(x2),.e. fi = f(x0), ..
Definition 3.2.1 Shift Operator E: The Shift operator E is defined as
Ef(x) = f(x+h)

In particular, Ef(xo) = f(xo+h) = f(x1),Ef(x1) = f(xo+2h) = f(x2),...., Ef(x;) = f(xo+ (i +
Dh) = f(xis1), ..

Therefore, the operator E when applied on f(x) shifts it to the value at the next nodal point. We have
E2f(x) = E(Ef(x)) = E (f(x+h)) = f(x+2h).
In general, we have

E*f(x) = f(x+kh), where k is any real number.

For example: E'/2[f(x)] = f(x+ %h)

Definition 3.2.2 Forward Operator A: The forward operator A is defined as
Af(x) = flx+h) = f(x)
In particular,

Af(xo) = flxo+h)—f(x0) = f(x1)— f(x0),
Af(x1) = f(xo+2h)— f(xo+h) = f(x2) — f(x1),

Af(xi) = flxo+(i+1)h) = f(xo+ih) = f(xir1) — f(x:),
These differences are called the first forward differences.
The second forward difference is defined by
Nf(x) = AAf(x)=A(f(x+h)—f(x) =Af(x+h)—Af(x)

)
= {f+2h) = fx+m)} —{f(x+h) - f(x)}
= fx+2h) =2f(x+h)+ f(x)

The forward differences can be written in a tabular form as in Table 3.1
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x | f(x) Af(x) A*f(x) A f(x) A'f(x)
xo | f(xo)
Af(xo) =
f(x1) = f(xo)
A*f(xo) =
x| f(xr) Af(x1) — Af(xo)
Af(x1) = A3 f(x0) =
f(x2) = f(x1) A f(x1) — A% f(x0)
N f(xr) = A f(x0) =
x| flx2) Af(x2) —Af(x1) A f(x1) — A% £ (xo0)
Af(x2) = N f(xr) =
f(x3) = f(x2) A f(x2) = A2 f(x1)
Af(xy) =
x3 | f(x3) Af(x3) = Af(x2)
Af(x3) =
f(xa) = f(x3)
x4 | f(xa)

Table 3.1: Forward Difference Table
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= Example 3.10 Construct the forward difference table for the data

x [—1]0][1]2
f =8 13112

Solution: We have the following difference table:

x [f@ ] MG N7 A7)
-1 -8
3—(—8)=11

0 3 —2—11=-13

1-3=-2 13+13 =26
1 1 114+2=13

12—-1=11
2 12

Table 3.2: Forward Difference Table

Definition 3.2.3 Backward Difference Operator V: The Backward difference operator V is
defined as

Vi) =fx)—fx—h)
In particular,

Vf(x1) = flxo+h)—f(xo) = f(x1)— f(x0),
Vi) = flxo+2h)— f(xo+h) = f(x2) — f(x1),

Vixir) = flxo+ i+ 1)h) = fxo+ih) = f(xip1) — f(xi),
These differences are called the first backward differences.

The second backward difference is defined by

Vif(x) = V(Vf(x)=V(f(x) = flx—h) = Vf(x) =Vf(x—h)
{f(&) =flx=h)} ={f(x=h) = f(x=2h)}
= f&)=2f(x=h)+f(x—2h)
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x | flx) Vf(x) Vif(x) V3 f(x) Vi (x)
xo | f(xo)
Vf(xo) =
f(x1) = f(xo)
V2f(xo) =
x| f(x1) Vf(x1)—Vf(xo)
Vfla) = V3 f(xo) =
flx2) — f(x1) V2f(x1) — V2 f(x0)
V2f(x) = V4 f(x0) =
x2 | flx2) Vf(x2) = Vf(x1) V3 f(x1) — V3 f(xo)
Vflx)= Vif(x) =
f(x3) = f(x2) V2f(x2) = V2 f(x1)
V2f(xy) =
x3 | f(x3) Vf(x3) = Vf(x2)
Vfxs) =
f(xa) = f(x3)
x4 | f(xa)

The backward differences can be written in a tabular form as in Table 3.3

Table 3.3: Backward Difference Table

= Example 3.11 Construct the backward difference table for the data

f(x)

Solution: We have the following difference table:

Relation Between finite difference operator
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x [JO ] Vi Vi) Vi)
—-1] -8
3—(—8)=11

0 3 —2—11=-13

1-3=-2 13+13 =26
1 1 114+2=13

12—-1=11
2 12

Table 3.4: Backward Difference Table

Definition 3.2.4 Central difference operator d: The central difference operator is defined as
h

h
81(x) = flx+3)—f(x—3)

Definition 3.2.5 Average (Mean) operator u: The central difference operator is defined as
h h

fe+2)+f(x=7)
i) = ——25——>
Prove that: (i) A=E—1 (i) A—V=VA (i) (1+A)(1-V)=1

1 52 1/2
(iv) uzi[E‘/erE“/z} (v) §=V(1-V)12 (v u={1+4}

d
(vii) E =e", where D= —.
X
Proof: (i) We know that E f (x) = f(x+ h). Therefore,

AF(x) = Flr+h) — f(x) = Af(x) = Ef(x) — f(x) — A=E—1 (3.1)
(ii) L.H.S
B-V)f(x) = Af(x)=Vf(x)

= {flath) = f)) ={fx) = fx=n)}
= Slx+h)=2f(x)+ f(x—h)
R.H.S

(VA)f(x) = V{Af(x)}
= V{f(x+h)—f(x)}
= {Vflx+h)-V/f(x)}
= {(fx+h) —f(x) = (f(x) = fx—R)}
= flx+h)=2f(x)+f(x—h)
Thus L.H.S. = R.H.S.
(iii) We know that Vf(x) = f(x) — f(x —h) = Vf(x)=f(x)—E'f(x) = V=1-E! =
1-V=E 'andA=E -1 = 1+ A = E. Therefore,

(1+8)(1-V)= (E)(E) =1
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(iv) We know that

pf(x) (3.2)
= 5 e s3]
= 5 B+ )

wf@) = 5 [EVE] ().

(v) We know that 1 —V = E~!Therefore,
RHS. = V(1-V)2f(x)
— VE) )

= V{EM) W) =Vt

h

h
= f(x+§)—f(x+§—h)

= flt )~ flet S
= O0f(x)=LH.S.

(vi) Try Yourself.
(v) We know that the Taylor’s series

Ef(x) = f(x-+h)
2
= f(x)+hf(x)+ %f”(x) + ...

WD)+ D)+

h2
= [1+hD+—=D*+..| f(x)

2
Efx) = &Pf().

Newton’s Forward Difference Interpolation Formula

Newton’s Forward Interpolation formula: Let xo,x1,x,...,x, be the equally spaced data and &
be the step length in the given data. In terms of the divided differences, we have the interpolation
formula as

f(x) = f(x0) + (x —x0).f[xo,x1] + (x — x0) (x —x1) f[x0, %1, X2] + ...

Using the relations for the divided differences

F1x0, X150y Xn] = ! A" f(xo)

n'ht

we get
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Af(xo) A% £ (xo) A £ (xo)
1'h 2142 3143

et (x—x0)(x—x1)(x —x2).. (X — Xp—1)

f(x) = f(xo) + (x — x0) + (x —x0) (x —x1) + (x —x0) (x —x1) (x — x2)

A" f(xo)
nlht

This relation is called the Newton’s forward difference interpolation formula.

_l’_

» Example 3.12 For the data construct the forward difference formula. Hence, find f(0.5). "

x |2[-1]0[1]2]3
f) 15[ 5 [1[3]11]25

Solution: We have the following difference table: From the table, we conclude that the data

x [0 [AF0) [ A50) [ A0 [ A0 [ A7)
-2 15
—10
—1 5 6
—4 0
0 1 6 0
2 0 0
1 3 6 0
8 0
2 11 6
14
3 25

Table 3.5: Forward Difference Table

represents a quadratic polynomial. We have &7 = 1. The Newton’s forward difference formula is
given by

X 2f(x > (x
700 = o)+ r—x0) 20 ey 2O (e ) S0
40k > f(
(x—xo)(x—xl)(x—xz)(x—X3)A4J;](q4O) + (X—xo)(x—X1)(X—X2)(X—x3)(x—x4)A5];£l50)-

By putting the required values from the table we have,

flx) = 15+(x+2)(1!1'?) +(x+2)(x+l)%+(x+2)(x+ 1)(x—0)%+(x+2)(x+ 1)(x—
0)(x— 1)%+(x+2)(x+ 1)(x—0)(x— 1)(x72)5!%.

F(x) =154+ (x+2)(—10) + (x+2)(x+ 1)(3) = 15— 10x — 20 +3x*> + 9x + 6 = 3x> —x + 1.
We obtain £(0.5) =3(0.5)>-0.5+1=0.75-0.5+1=1.25.
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n Example 3.13 A third degree polynomial passes through the points (0, —1),(1,1),(2,1)and(3,—2).
Determine this polynomial using Newton’s forward interpolation formula. Hence, find the value at
1.5. "

Solution: We have the following difference table: From the table, we conclude that the data

x | f(x) [ Af() | A () | AF()
0] —1

2
1|1 )

0 -1
21 -3

-3
3] -2

Table 3.6: Forward Difference Table

represents a cubic polynomial. We have 47 = 1. The Newton’s forward difference formula is given by

A A A
70 = o)+ —x0) 2100 4 e BT e B
By putting the required values from the table we have,
2 -2 -1
fx)=(-1)+ (x—O)m +(x—0)(x— I)W +(x—=0)(x— 1)(x—2)3!T.

1 1
flx)=—=14+2x—x(x—1)— gx(x— x—2)= —1+2x—x2—|—x—8(x3—3x2+2x)

flx)=—14+02-2/6+1)x—(1-3/6)x> ~1/6x> = —1+(8/3)x— (1/2)x* — (1/6)x°>

We obtain f(1.5) = —1+(8/3)(1.5) — (1/2)(1.5)*> — (1/6)(1.5)* = 1.3125.

Newton’s Backward Difference Interpolation Formula

Newton’s Backward Interpolation formula Let xo,x1,x2,...,x, be the equally spaced data and &
be the step length in the given data. Again, we use the Newton’s divided difference interpolation
polynomial to derive the Newton’s backward difference interpolation formula. Since, the divided
differences are symmetric with respect to their arguments, we write the arguments of the divided
differences in the order x,,,x,—1,...,x1,X0. The Newton’s divided difference interpolation polynomial
can be written as

Fx) = f ) + (x = x0) f X0, Xn—1] + (0 = %) (0 = X0—1) f o, X1, X0 2] + o 4 (o — ) (x —
Xn_])...(.x—X])f[.xn7.xn_] s Xn—25 443 X1 ,X()]
Since, the divided differences are symmetric with respect to their arguments, we have

B 1
ol

VI (xn)

f[xnaxnfla'"ax()] :f[x()?xla"'axn]
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Thus we obtain the Newron’s backward difference interpolation formula as

Vf(x V2f(x
fx) = flxn)+ (x—xn)];fh") + (x—x) (x —x,—1) va;(,zn) + (x—x0) (X — xp—1 ) (x —
V3 £(x, . . V= f(x,
Xn—2) 3{}(13 ) +o (= x0) (x—xp—1) (X —xp—2) ... (x — x1) n{f(z” ) .
= Example 3.14 Using Newton’s backward difference interpolation, interpolate at x = 1.0 from the
following data. "
X 0.1 0.3 0.5 0.7 0.9 1.1

f(x) | =1.699 | —1.073 | —0.375 | 0.443 | 1.429 | 2.631

Solution: We have the following difference table: From the table, We have 4 = 0.2. The Newton’s

x [ 0 [V [V [V [ VW VW
0.1 | —1.699
0.626
0.3 | —1.073 0.072
0.698 0.048
0.5 | —0.375 0.120 0
0.818 0.048 0
0.7 | 0.443 0.168 0
0.986 0.048
0.9 1.429 0.216
1.202
1.1 2.631

Table 3.7: Backward Difference Table

backward difference formula is given by

Vf(xa) V2 f(xa) V3 f (%)
F(x) = f(xa) + (x—x5) 0 +(x—xn)(x—xn_l)W+(x—xn)(x—xn—1)(x—xn_2)W.
By putting the required values from the table we have,
1.202 0.216 0.048
=2.631 —1.1 —1.1)(x—0.9) ——— —1.1)(x—0. —-0.7) 5.
f(x) 631+ (x )1!(0'2)4—()6 ) (x 09)2!(0.2>2+(x )(x—0.9)(x—0 )3!(0‘2)3

f(x) =2.63146.01(x—1.1)+2.7(x— 1.1)(x— 0.9) + (x— 1.1)(x — 0.9) (x — 0.7).

Since, we have not been asked to find the interpolation polynomial, we may not simplify this
expression. At x = 1.0, we obtain
f(1.0)=2.631+6.01(1.0—1.1)+2.7(1.0—-1.1)(1.0-0.9) + (1.0—-1.1)(1.0—-0.9)(1.0 - 0.7)
=2.631+6.01(—0.1)+2.7(—0.1)(0.1) + (—0.1)(0.1)(—0.3) = 2.004.
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Quiz
Question 1: For the following data, calculate the differences and obtain the Newton’s forward and
backward difference interpolation polynomials. Are these polynomials different? Interpolate at
x=0.25 and x = 0.35.

X 01 02| 03|04 ] 05
f(x) | 1.40 | 1.56 | 1.76 | 2.00 | 2.28

Question 2: Give the relation between the divided differences and forward or backward differences.
Question 3: Can we decide the degree of the polynomial that a data represents by writing the
forward or backward difference tables?

Definition 3.4.1 Divided Difference Let the (x;, f(x;)),i =0,1,2,...,n be given unequal spaced
data. We define the divided differences as follows:
First divided difference: Consider any two consecutive data values (x;, f(x;)), (xit1, f(xi+1))-
Then, we define the first divided difference as

J(xis1) — f(xi)

f[xiaxi+l] == -
Xi+1 —Xi

In particular,

flxo.x1] =

Second divided difference: Consider any three consecutive data values (x;, f(x;)), (xit1, f(xix1)), (xir2, f(xir2)).
Then, we define the second divided difference as
J i1, Xiva) — f [xiy X1

X Xip1,xig2] = )
Xit2 —Xi

fo) = f0) pr oy FE) ) Ly S = fE)

X1 — X0 X2 —X1 X3 —X2

In particular,

flx2,x1] = flxr,x0] Flrnxaxs] = flx3,x2] —f[xzm]’m
X2 — X0 X3 —X1

» Example 3.15 Find the second divided difference of f(x) = 1/x, using the points a,b,c. .

fxo,x1,x0] =

Solution: We have

_ f(b)—f(a) (1/b)—(1/a) (a—b)/ab 1
flab) = = — = = ——— P ——
_ fle)=fb) _ (1)e)—(1/b) _ (b—c)/bc 1
floe === — = = O
Flabd = f[b,cl:i:[a,b] _ (—l/bczic(l—l/ab) _ i

= Example 3.16 Obtain the divided difference table for the data

x [-1]0][2] 3
fx) | -8 |3 | 1] 12

Solution: We have the following divided difference table:
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x | f(x)| first D.D. | Second D.D. | Third D.D.
—-1] -8
ﬂzll
0—(=1)
—1—T1I
S |
0 3 2= (1)
1-3 (-
. 4= (=4 _,
2= 3 (1
T—(=1)
2 |1 LE G
12-1 -0
Sl |
3-2
3 12

Table 3.8: Divided Difference Table

Newton Divided difference Interpolation

Definition 3.5.1 Newton Divided Difference Interpolation Let the (x;, f(x;)),i =0,1,2,...,n
be given unequal spaced data. We define the Newton divided difference interpolation formula as
follows:

f(x) = f(xo) + (x —x0) f[x0,x1] + (x — x0) (x — x1) fx0, x1,%2] + ... + (x — x0) (x — x7)... (x —
Xn—1) fX0,X1,%2, s X ]

» Example 3.17 Find f(x) as a polynomial in x for the following data by Newton’s divided
difference formula

X —4 | —-110/|2 5
f(x) | 1245 | 33 | 5| 9 | 1335

Solution: We form the divided difference table for the given data. The Newton’s divided difference
formula gives

f(x) = fxo)+ (x—x0)f[x0,%1] + (x —x0) (x — x1) flxo, x1,%2]

(x—xo)( (x —x2) flxo,x1,%2,%3]

(x—x0) (x —x1) (x — x2) (x — x3) flx0, %1, X2, X3, X4].

1245+ (x+4)(—404) + (x+4)(x+1)(94) + (x+4) (x + 1)x(—14)
(x4+4)(x+ 1)x(x—2)(3).

X —X]

I+ +

_l’_

= 3t —53 +6x2— 14x+5.

1245 — 404x — 1616+ (x* + 5x +4)(94) + (x* 4+ 52> + 4x)(—14) + (x* +3x° — 6x> — 8x)(3).
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x | flx) first D.D. Second D.D. Third D.D. Fourth D.D.
—4 ] 1245
33— 1245
T 404
e
28— (—404)
~1| 33 T oy
0—(—4)
>—33 =28 10-(%4) _ 14
0—(—1) 2—(—4)
2—(—28) 13— (—14)
0| 5 A ) =3
2—(=1) 5—(—4)
9-5_, 8810 _ .
2-0 5-(=1)
442 =2)
2 | 9 — 88
1335-9 0
—Z — 442
5-2
5 1335

Table 3.9: Divided Difference Table

» Example 3.18 Find f(x) as a polynomial in x for the following data by Newton’s divided

difference formula

X

113 ] 4 5

7 10

()

3131169 | 131

351 | 1011

Hence, interpolate at x = 3.5 and x = 8.0. Also find, f'(3) and f”(1.5).

Solution: We form the divided difference table for the given data.

x | f(x) | first D.D. | Second D.D. | Third D.D. | Fourth D.D. | Fifth D.D.
1 3
14
3 31 8
38
4 69 12 0
62 0
5 131 16 0
110
7 | 351 22
220
10 | 1011

Table 3.10: Divided Difference Table
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The Newton’s divided difference formula gives

f(x) = f(xo)+ (x—x0) fxo, x1] 4 (x —x0) (x —x1) flxo, x1,%2] + (x — x0) (x — x1) (x — x2) fx0, X1, %2, x3]
(x—x0) (x —x1) (x — x2) (x — x3) f[x0, X1, X2, %3, X4]

(x—x0) (x —x1) (x — x2) (x — x3) (x — x4) f[x0, X1, %2, X3, X4, X5].

= 34+x—1)(14)+(x—1)(x=3)(8)+ (x—1)(x—=3)(x—4)(1).

= 34+ 14x— 14488 —32x+24+x° — 8%+ 19x— 12 =2 +x+ 1.

+
+

Hence f(3.5) = P5(3.5) = (3.5)3 + 3.5+ 1 = 47.375, and f(8.0) = P5(8.0) = (8.0)3 + 8.0+ 1 =
521.0.

Now, Pj(x) =3x>+1, and P} (x) =

Therefore, f'(3) = P/3) =3(9) + 1 ~ 8 f"(1.5) = P!(1.5) = 6(1.5) = 9.

Lagrange’s Interpolation formula:
Let the data

X X0 X1 X2 Xn

fx) | fO) [ fOa) | fO2) | o | flxn)

be given at distinct unevenly spaced points or non-uniform points xp, X1, ..., X,. This data may also
be given at evenly spaced points. For this data, we can fit a unique polynomial of degree < n. Since
the interpolating polynomial must use all the ordinates f(xg), f(x1),...f(x,), it can be written as a
linear combination of these ordinates. That is, we can write the polynomial as

Bu(x) = lo(x) f(x0) + 11 (x) £ (1) + oo+ L (%) £ ()

where

li(x) = (X—Xo)a (X—Xl)’ (X—XZ),..., (X—xi_l), (x—xl-+1),..., (x—xn)
i (Xi _X0>7 (Xi _Xl), (Xl' —XZ),..., ()Cl‘ —Xi_l), (x,- —)CH_]), ceey (xi —xn>

= Example 3.19 Use Lagrange’s formula, to find the quadratic polynomial that takes the values

x |[0]1]3
fx) |0 110

Solution: Since f(xo) and f(x;) are zero, we need to compute /; (x) only. We have

(x—x0)(x —x2) _ (x—0)(x—13) _ 1
(xl—xo)(xl—xz) (1—0)(1—3) 2

The Lagrange quadratic polynomial is given by

L(x) = (x* —3x)

Po(x) = £x) = lof (x0) + 11 fx1) + b f (x2) :0—|——%(x2—3x)(1)+0: %(Sx—xz).

= Example 3.20 Construct the Lagrange interpolation polynomial for the data

x | —1]1]4] 7
fx) | 21063342
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Hence, interpolate at x = 5.

Solution: Since f(x;) is zero, we need to compute lo(x), l2(x), /3(x) only. We have

o (x—x )(x—x2)(x —x3) B (x—1)(x—4)(x—17) 1
) = oy~ —ae)ro—x) ~ CI- DT 4)(1-7) g0l 123w 28)
o (r—x)x—x)(x—x3) (D -D-7) 1
B0 = (o)) —xy) ~ G- a—7) = 4 )
o rexo)(x—x)(x—x)  (x+1)(x—1)(x—4) 1 EPCIN
B0 = ) o) (s ) — (T D717 —4) — 1ag TRt

The Lagrange quadratic polynomial is given by

fx) = lof(xo)+Lfx)+hf(x)+5f(x)
1 1

= ——(x*—12x* +39x—28)(-2)+0— —

1

3 2 2

3 —4x% —x+4)(342

%0 45(x Tx x+7)(63)+144( X —x+4)(342)
1 7+171 3 3+49 171 2 39+7 171 n 7 49+171

= _— —_— X —_—— —_———— X _— —_— o — X —_—— —_—
40 5 10 5 18 40 5 72 10 5 8

= ©-1
Hence, f(5) = P3(5) =5 —1=124.

= Example 3.21 Given that (0) =1, f(1) = 3, f(3) = 55, find the unique polynomial of degree 2
or less, which fits the given data. "

Solution: We have xo =0, f(xo) = L,x; = 1, f(x1) = 3,x = 3, f(x2) = 55. The Lagrange
fundamental polynomials are given by

Io(x) = (x—x1)(x—x2)  (x—1)

( = — (X —4x
(xo—x1)(xo—x2) (0—1)(0-3) (@ —dxt3)
_ mx)mm)  (-0@=3) 1.
hix) = (1 —x0)(x1 —x2)  (1—0)(1—3) 5 (3x=x)
o (x—xo)(x—x1)  (x—0)(x—1) 1 2y
b(x) = (2—x0)(2a—x1) (3-0)3-1) g =)

The Lagrange quadratic polynomial is given by
P(x)=f(x) = lof(xo)+hf(x1)+0f(x)

1 1 1
= g(xz —4x+3)(1)+ E(.?>x—x2)(3) + 6(x2 —x)(55)

= 8’ —6x+1.
Quiz

Question 1: Using the data sin(0.1) = 0.09983 and sin(0.2) = 0.19867, find an approximate value
of sin(0.15) by Lagrange interpolation.

Question 2: Give two uses of interpolating polynomials.

Question 3: Write the property satisfied by Lagrange fundamental polynomials /;(x).
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Numerical Integration

Numerical Integration using Trapezoidal rule:

This rule is also called the trapezeum rule. Let the curve y = f(x),a < x < b, be approximated
by the line joining the points P(a, f(a)),Q(b, f(b)) on the curve. Let the interval [a,b] be sub-
divided into N equal parts of length h. That is, h = (b —a)/N. The nodal points are given by
a=xgp,x1 =x9+h,xp =x9+2h,....xy =x0+Nh=b. The Trapezoidal rule is defined as

1= [} f(x)dx = ﬁ[f(XO) +f(an) + 247 () + f () 4.+ fav-1) -

2
Remarks: The trapezium rule produces exact results for polynomials of degree < 1.
d
m Example 3.22 Using the trapezium rule, evaluate the integral / = fol m with 2 and 4

subintervals. Compare with the exact solution. Comment on the magnitudes of the errors obtained m
Solution: With N = 2 and 4, we have the following step lengths and nodal points.

= b—a = l The nodes are 0,0.50, 1.0.

=2 h
N=2 N 2

We have the following tables of values.

X 0 0.50 1.0
f(x) | 0.1 | 0.07547 | 0.05882

Now, we compute the value of the integral.

dx h
= 5——F = =|f(0 1.0)+2{f(0.50
h=[ o5 = 5UO+/(10)+2{/050)}]
= 0.50[0.1+0.05882+2{0.07547}].
0.07744.
— 1
N =4, h= bNa =7 h = 0.25, The nodes are 0.0,0.25,0.5,0.75,1.0.
We have the following tables of values.
x |00 0.25 0.50 0.75 1.0

f(x) ] 0.1 | 0.08649 | 0.07547 | 0.06639 | 0.05882

Now, we compute the value of the integral.

1 dx
b= [ arerio
h
= 3 [£(0.0)+ £(1.0) +2{(025) + £(0.50) + £(0.75)}
= 0.125 [0.1 +0.05882 —1—2{0.08649 +0.07547 +0.06639}] .

= 0.07694.
The exact value of the integral is

dx dx 1
LT (x+3)2+1 [tan™ (x+3)]g = [tan™!(4) —tan"}(3)]
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The errors in the solutions are the following:

|Exact — 1| = [0.07677 — 0.07744| = 0.00067.

|Exact — b| = |0.07677 — 0.07694| = 0.00017.
. 1 .
We find that |[Error in bL|= Z|Err0r in L.

d
= Example 3.23 Evaluate / = | 12 % with 4 and 8 subintervals using the trapezium rule. Compare
X

with the exact solution and find the absolute errors in the solutions. Comment on the magnitudes of
the errors obtained. Find the bound on the errors. "

Solution: With N =4 and 8, we have the following step lengths and nodal points.

N =4, h= b;,a = % The nodes are 1,1.25,1.5,1.75,2.0.
We have the following tables of values.
X 1 1.25 1.50 1.75 2.00
f(x) | 0.125 | 0.11429 | 0.10526 | 0.09756 | 0.09091
Now, we compute the value of the integral.
2 dx h
I = 533 2 [f(1.0)+ f(2.0) +2{f(1.25) + f(1.50) + f(1.75) }]
= 0.125[0.1254+0.09091 +2{0.11429 + 0.10526 + 0.09756}] .
= 0.10627.
— 1
N=8, h= bNa =3 The nodes are 1,1.125,1.25,1.375,1.5,1.675,1.75,1.875,2.0.

We have the following tables of values.

1 1.125 1.25 1.375 1.50 1.675 1.75 1.875 2.00

f(x)

0.125 | 0.11940 | 0.11429 | 0.10959 | 0.10526 | 0.10127 | 0.09756 | 0.09412 | 0.09091

Now, we compute the value of the integral.

L =

dx

2
/1 5+3x

g[f(l.O) + £(2.0) +2{£(1.125) + £(1.25) + f(1.375) + £(1.50) + £(1.675) + f(1.75) + £(1.875)}]

0.0625[0.12540.09091 4+ 2{0.11940 4 0.11429 + 0.10959 + 0.10526 + 0.10127 4+ 0.09756 + 0.09412}] .
0.10618.

The exact value of the integral is

1

[In(5+3x)]7 = = [In(11) —In(8)] = 0.10615

W |

_1
x 3



122 Chapter 3. Numerical Methods

The errors in the solutions are the following:

|Exact —I| = |0.10615 — 0.10627| = 0.00012.

|Exact — L] = [0.10615 — 0.10618| = 0.00003.

1
We find that |Error in L|=—|Error in I;|.
4
Quiz

d
Question 1: Find the approximate value of / = fol % , using the trapezium rule with 2, 4 and 8
X

equal subintervals. Using the exact solution, find the absolute errors.

Question 2: What is the restriction in the number of nodal points, required for using the trapezium
rule for integrating I = | [f’ f(x)dx?

Question 3:What is the geometric representation of the trapezium rule for integrating / = | f f(x)dx?

Numerical Integration using Simpson 1/3 rule or Simpson 3/8 rule:

Simpson 1/3 rule: We subdivide the given interval [a, b] into even number of subintervals of
equal length h. That is, we obtain an odd number of nodal points. We take the even number of
intervals as 2N. The step length is given by 2 = (b —a)/(2N). The nodal points are given by
a = xo,Xx1 = X0+ h,x2 = x4 2h,...,xox = x9 + 2Nh = b. Then, Simpson 1/3 rule is defined as

I=[? f(x)dx=
B1F (o) + £ (o) +4{ 1) + £ (x3) oo flaav—1)} +2 {f(02) + £ (xa) + ..+ faaw—2)}]-

d
» Example 3.24 Find the approximate value of / = fol l—x using the Simpson’s 1/3 rule with 2,
X
4 and 8 equal subintervals. Using the exact solution, find the absolute errors. "
Solution: With n =2N =2 or N = 1 we have the following step lengths and nodal points.
b— 1-0
4 =" _ 0.5, The nodes are 0,0.5, 1.0.

2N 2
We have the following tables of values.

x |0 0.5 1.0
f(x) | 1] 0.666667 | 0.5

For N =1, h=

Now, we compute the value of the integral.

1
L = / dx
0o 1+x
h

= U0 +/(1.0) +4{7(0.5)}]

0.5
= 5 [1.04+0.5+4{0.666667}].
= 0.674444.

Again, with n = 2N =4 or N = 2 we have the following step lengths and nodal points.
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_ 1—
For N =2, h= bZNa = TO = 0.25, The nodes are 0,0.25,0.5,0.75,1.0.
We have the following tables of values.
x | 0]0.25 0.5 0.75 1.0
f(x) | 1| 0.8 | 0.666667 | 0.571429 | 0.5
Now, we compute the value of the integral.
/1 dx
o 1-+x

L

3
0.5
3
0.693254.

[1.0+0.5+4{0.84+0.571429} +2(0.666667)]

" LEO) 4 £(1.0) +4 {£(0.25) + £(0.75)} + 2 {£(0.5)}]

Finally, with n = 2N = 8 or N = 4 we have the following step lengths and nodal points. For
N =4,

h=

2N

b—a _1-0_ s

8

0

The nodes are 0,0.125,0.250,0.375,0.5,0.625,0.75,0.875, 1.0.

We have the following tables of values.

0

0.125

0.250

0.375

0.500

0.675

0.750

0.875

1.0

f(x)

1

0.888889

0.8

0.727273

0.666667

0.615385

0.571429

0.533333

0.5

Now, we compute the value of the integral.

/

" LH0) + F(1.0) +4{£(0.125) + £(0.375) + F(0.675) + F(0.875)} +2{£(0.25) + (0.5) + £(0.75)}]

L =

3

0.5

3

dx
14+x

[1.040.5+4{0.888889 +0.727273 + 0.615385 -+ 0.533333} +2{0.8 4 0.666667 + 0.571429}] .

0.693155.

The exact value of the integral is / = In2 = 0.693147. The errors in the solutions are the following:

|Exact — 1| = |0.693147 — 0.694444| = 0.001297.
|Exact — | = |0.693147 — 0.693254| = 0.000107.

|Exact — I5| = 0.693147 — 0.693155| = 0.000008.

= Example 3.25 The velocity of a particle which starts from rest is given by the following table.

t(sec)

0

2

4

6

8

10

12

14

16

18

20

v(ft/sec)

0

16

29

40

46

51

32

18

8

3

0
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Evaluate using Simpson’s 1/3 rule, the total distance traveled in 20 seconds. "

Solution: From the definition, we have

Starting from rest, the distance traveled in 20 seconds is
s = 02 Oyvdr

The step length is 2 = 2. Using the Simpson’s rule, we obtain

20
s = / vdt
0

h

= 0+ f(20) +4{f(2) + f(6) + f(10) + f(14) + f(18)} +2{f(4) + f(8) + f(12) + f(16)}]

2
S [0+0+4{16+40+ 5141843} +2{29+46+32+8}].

= 494.667 feet.

Simpson 3/8 rule:
In Simpson’s 3/8 rule, the number of subintervals is n = 3N. Hence, we have

_b—a

h )
3N

and Simpson 3 /8 rule is defined as

= J2 ()= " 17 (00) + £ (xaw) +2 {f0) £ (0) oo f e 3)} +

3{f(x1) + flx2) + ... + fxan—2) + f(xon—1) }]-
d
» Example 3.26 Evaluate I = || 12 % with 3 and 6 subintervals using Simpson’s 3/8 rule. Com-
X
pare with the exact solution. "

Solution: With N = 3 and 6, we have the following step lengths and nodal points.

a1
N=3, h= bN“ = 3+ The nodes are 1,4/3,5/3,2.0.

We have the following tables of values.

X 1 4/3 5/3 2.00
f(x) | 0.125 [ 0.11111 | 0.10000 | 0.09091

Now, we compute the value of the integral.

2 dx 3h
I = = g L0+ f(2.0)+3{f(4/3)+f(5/3)}]

1 5+3x
= 0.125[0.12540.09091 +3{0.11111 +0.10000}] .
= 0.10616.
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b— 1
@ _ . The nodes are 1,7/6,8/6,9/6,10/6,11/6,2.0.

N =6, h=
N 6

We have the following tables of values.

X 1 7/6 8/6 9/6 10/6 | 11/6 | 2.00
F(x) | 0.125 [ 0.11765 | 0.11111 | 0.10526 | 0.10000 | 0.09524 | 0.09091

Now, we compute the value of the integral.

2 dx

1 5+3x

3h

= ¢ S(LO)+f(2.0)+2{f(9/6)} +3{f(7/6) + £(8/6) + f(10/6) + f(11/6)}]

1
= ¢ [0125+0.09091 +2{0.10526} +3{0.11765+0.11111+0.10000 +0.09524}] .

= 0.10615.

L =

The exact value of the integral is

1

=2 Si’;x =3 [In(5+3x)]} = = [In(11) —In(8)] = 0.10615

W | =

The errors in the solutions are the following:

|Exact — 1| = [0.10615 — 0.10616| = 0.00001.
|Exact — b = [0.10615 — 0.10615| = 0.00000.

The magnitude of the error for N = 3 is 0.00001 and for N = 6 the result is correct to all places.

Remarks: The Simpson 1/3 rule and Simpson 3/8 rule produces exact results for polynomials of
degree < 3.

Quiz
Question 1: Find the approximate value of I = [ 12 Sfi’;x , using the Simpson 1/3 rule with 4 and 8
equal subintervals. Using the exact solution, find the absolute errors.
Question 2: What are the disadvantages of the Simpson’s 3/8 rule compared with the Simpson’s
1/3 rule?
Question 3: What is the restriction in the number of nodal points, required for using the Simpson’s
3/8 rule for integrating [ = | : f(x)dx?
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Solution of ordinary differential equations by Taylor’s Series Method:

The Taylor’s series is defined as

! h2 " h3 n
Yit1 =Yyi+hy;+ PYRL + 37V +..

= Example 3.27 Consider the initial value problem y’ = x(y+1),y(0) = 1. Compute y(0.2) with
h = 0.1 using Taylor series method of order two and fourth. If the exact solution is y = —1 + 2e°/2,

find the magnitudes of the actual errors for y(0.2). .

Solution: We have y/ = f(x,y) =x(y+1), x =0, yo=1landh=0.1
(i) Taylor series second order method.

2

Vit = yi+hy; + gy;-'

We have y” = xy’ +y+1. Withxg =0,yo = 1, we gety'(0) = 0,y"(0) = xoy5+yo+1=0+1+1=2.

!’ 0-1 2 "
¥(0.1) = y1 = yo + (0.1)y, + (2'))10 =1+0+(0.005)2 =1.01

With x; =0.1,y; = 1.01, we get y, = 0.1(1.0141) = 0.201. and y// = x;y; +y; +1 = (0.1)(0.201) +
1.01+1 =2.0301.
(0-1)?

¥(0.2) =ya =y +(0.1)y, + Ty{ = 1.01+0.1(0.201) 4 0.005(2.0301) = 1.04025.

(if) Taylor series fourth order method.

2 h3 h4

" n

Yitl = Yyi+hy; + 71V + 3 + ﬂ)’?}

We have y// — xy/ +y+ lvy/// — xy// +2y/’yiv — xy/// + 3y//‘
With xg = 0,y9 = 1, we get

1"

Yo = 0,55 = 2,y4" = xoy( + 20 = 0,4 = xoyy +3y5 = 0+3(2) = 6.

;0.2 (0.1 0 (0.1)*
yi =yo+(0-1)yo+( 2,) yo+( 3,) y0+( 4,) Yo

0.0001
24

= 140+0.005(2)+0+

(6) =1.010025.
With x; =0.1,y; = 1.010025, we get
¥} =0.1(1.010025 + 1) = 0.201003.
y{ =x1y{ +y1+1=(0.1)(0.201003) + 1.010025 + 1 = 2.030125.
¥ =x1y{ +2y; = 0.1(2.030125) +2(0.201003) = 0.605019,

Y = x1y 43y = 0.1(0.605019) + 3(2.030125) = 6.150877.
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(0.1)2 , (0.1 » (0.1)*

y2 =y1+(0.1)y; + TR R T I T
0.001 0.0001
~ 1.010025 +0.1(0.201003) +-0.005(2.030125) + +—— (0.605019) + (6.150877) =
1.040402.

The exact value is y(0.1) = 1.010025,y(0.2) = 1.040403.
The magnitudes of the actual errors at x = 0.2 are

Taylor series method of second order: |1.04025 — 1.040403| = 0.000152.

Taylor series method of fourth order: |1.040402 — 1.040403| = 0.000001.

Solution of ordinary differential equations by Euler's method:

Consider a first order initial value problem defined as
Y=rfxy),  yxo)=yo
The Euler’s method is defined as

Yn+l = Yn +hf(xnayn)-

= Example 3.28 Solve the initial value problem yy’ = x, y(0) = 1, using the Euler method in
0<x<0.8, with i =0.2 and & = 0.1. Compare the results with the exact solution atx =0.8.. =

Solution: We have y' = f(x,y) = % The Euler’s method gives
y

X,
Yn+1 :yn+hf(xn7yn) =y, th <yn> .
n

Here h =0.2,xy = 0,y9 = 1. Now we have
X
yi=y(x1)=y(02)=yo+h <y2> =14(0.2)(0)=1.0

y2=y(x2) =y(04) =y1+h (;i) =1+(0.2) ((1)2> = 1.04

4
vs = y(53) = y(0.6) = ya +h (2 ) = 1.04+(02) [ 22} = 111692
v 1.04

o

.6
1.11692

ya=y(xs) =y(0.8) =y3+h (xS) =1.11692 4 (0.2) ( > — 1.22436.
Y3
When 2 = 0.1, we have

yi=y(x1)=y(0.1) =yo+h (;Cz) =1+(02)(0)=1.0
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2 = y(x2) = (0.2) = y; +h (:) =1+4(0.1) <O‘l> = 1.01.

1.0
v3=y(x3) = (0.3) =y, + h (;ﬁ) = 1.01+(0.1) <3021> — 1.02980.
ya=y(x) = y(0.4) = y3 +h (;i) —1.02980 + (0.1) (1 (? ) — 1.05893
ys =y(xs) = (0.5) =y4+h<xj> =1.05893 + (0.1) (1 (;)4 3) =1.09670
Y6 = y(x6) = (0.6) = ys +h<xz> = 1.09670 + (0.1) (1 (;)5 o> = 1.14229
y7 =y(x7) =y(0.7) :y6+h(xz> = 1.14229+(0.1) (1 106 9) —=1.19482
vs = y(xg) = (0.8) = y7 + h (’;) = 1.19482+ (0.1) (1.10947182 = 1.25341

The exact solution is y = v/x2 + 1. At x = 0.8, the exact value is y(0.8) = v/1.64 = 1.28062.
The magnitudes of the errors in the solutions are the following:

h=0.2:1]1.28062 — 1.22436| = 0.05626.

h=0.1:]1.28062 — 1.25341| = 0.02721.
Quiz

Question 1: You are given the differential equation y’ = 6x where y = 2 for x = 0. The statement:
y=2forx=0is called ......

Question 2: Solve the initial value problem yy' = x, y(0) = 1, using the Euler method in
0<x<0.8, with h =0.2 and & = 0.1. Compare the results with the exact solution at x = 0.8.

Modified Euler’s Method

= Example 3.29 Solve the following initial value problem using the modified Euler method with
h=0.1 forx € [0,0.3].

Y=y+x, y0)=1
Compare with the exact solution y(x) =2¢* —x — 1. "

Solution: Modified Euler’s method is given by

Yn+1 =Yn +hf <xn+ B

h h
~on + zf(xmyn))

We have y = f(x,y) =y+x,x0 =0,y0 = 1 and h = 0.1. Therefore,
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h h 0.1 0.1
y(0.1) =y, =yo+hf <xo+2,yo+2f(xo,y0)> =1.0+0.1f <0+ 2,1+2f(0,1)>

y1=1.040.1f(0+0.05,1+0.05(140)) = 140.1(0.05,1.05)
y1=1+0.1(1.0540.05) = 1.11.

Now, we have x; =0.1,y; = 1.11,y} = f(x1,y1) =y1 +x1 = 1.114+0.1 = 1.21.

h h
y(0.2) =y =y1 +hf <x1 tont 2f(x1,y1)> =

0.1 0.1

1.11+40.1f (0.1+2,1.11+2f(0.1,1.11)>

y2=1.1140.1£(0.140.05,1.1140.05(1.11+0.1)) = 1.11 4+ 0.1£(0.15,1.1705)
yi=1.1140.1(1.1705+0.15) = 1.24205.

Again, we have x, = 0.2,y, = 1.24205,y} = f(x2) = y2 +x, = 1.24205 + 0.2 = 1.44205.

h h
y(0.3) =y3 =y +hf <x2+2,y2+2f(x2,y2)> =

0.1 0.1
1.24205+0.1f (0.2 +—5,1.24205+ (02, 1.24205))
y3 = 1.24205 4 0.1f (0.2 4 0.05,1.24205 4 0.05(1.44205)) = 1.24205 + 0.1 (0.25,1.31415)

yi = 1L11+0.1(1.31415+0.25) = 1.39846.

The exact solution at x; =0.1,y; = 1.11,h=0.11s 1.11034, at x, = 0.2,y, = 1.24205,h = 0.1 is
1.24281 and x3 = 0.3,y3 = 1.39846,h = 0.1 is 1.39972. The magnitudes of the errors in the solutions
are the following:

Atx=0.1:]1.11034 —1.11] = 0.00034.
Atx=0.2:]1.24281 — 1.24205| = 0.00076.
Atx=0.3:]1.39972 — 1.39846| = 0.00126.

= Example 3.30 For the following initial value problem, obtain approximations to y(0.2) and y(0.4),
using the modified Euler method with 4 = 0.2.

Yy ==2xy%, y(0)=1.

Compare with the exact solution y(x) = 1/(1+x?). .
Solution: Modified Euler’s method is given by

h h
Yn+1 = Yn +hf (xn+27yn+2f(xn7yn)>

We have y = f(x,y) = —2xy%,x0 = 0,y9 = 1 and h = 0.2. Therefore,
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h h 0.2 0.2
y(0.2) =y, =yo+hf <X() + E,yo + zf()Co,y())> =1.0+0.2f <0+ 5 1+ Tf((), 1))

yi =1.0+0.2f(040.1,1+0.1(0)) =1+0.2/(0.1,1)
y1=1+02(—=2(0.1)(1)>=1-0.04 = 0.96.

Now, we have x; = 0.2,y; = 0.96,y] = f(x1,y1) = —2.x1.y] = —2(0.2)(0.96)? = “0.36864

h h
y(0.4) =y, =y1 +hf <x1 +-1+ 2f(x1,y1)> =

2
0.2 0.2
0.9640.2f <o.2+ =096+ == f(0.2,0.96)>

¥2=0.96+0.2£(0.240.1,0.96+0.1(*0.36864)) = 0.96 + 0.2 (0.3,0.92314)
y1 = 0.96+0.2(—2)(0.3)(0.92314)% = 0.85774.

The exact solution at x; = 0.2,y; =0.96,h = 0.2 is 0.96154, at x, = 0.4,y, = 0.85774,h = 0.2 is
0.86207 The magnitudes of the errors in the solutions are the following:

Atx=0.2:]0.96154 — 0.96| = 0.00154.
Atx=0.4:]0.86207 — 0.85774| = 0.00433.

Solution of ordinary differential equations by Runge-Kutta method:
Second order Runge-Kutta method: Consider a first order initial value problem defined as

Y =f(xy),y(x0) =0
The second order Runge-Kutta method is defined as
yi =yo+ 3 {ki +k}

where

kl == hf(-x()vy())a
ky = hf (xo+h,yo+ k1)

Fourth order Runge-Kutta method: The fourth order Runge-Kutta method:
Y1 =Yoo+ é {kl + 2ky + 2k; —|—k4}

where

ko =hf(xo+%y0+4)

ks =hf(xo+%y0+%)

ka = hf(xo+h,yo+k3)
m Example 3.31 Solve the initial value problem

Yy ==2xy%, y(0)=1
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with A = 0.2 on the interval [0,0.4]. Use (i) second order Runge-Kutta method;

(ii) the fourth order classical Runge-Kutta method. Compare with the exact solution y(x) = 1/(1+
2
x7). .

Solution: We have, xo = 0,y0 = 1,2 = 0.2 and f(x,y) = —2xy?
Second order Runge-Kutta Method

yi =yo+ 3 {ki+k}

where
ki = hf(x0,y0) = 0.2(—2x0y3) = (—0.4)(0)(1) =0
and
ko = hf(x0+h,yo+ki) = h(=2)(x0 +h)(yo +k1)* = 0.2(=2)(0+0.2)(1 +0)> = —0.08
Therefore, by second order Runge-Kutta becomes
y1=y(0.2) =yo+ 1 {ki +k2} = 1+ 1 {0-0.08} = 0.96

Now, we have x; = 0.2,y; = 0.96, then

ya=y1+3{K +k}
where

Ky = hf(x1,y1) = 0.2(=2)(x1)(y}) = (-0.4)(0.2)(0.96)* = —0.73728

and

Ky = hf(x; +h,y +k}) = h(=2)(x; +h)(y1 +£;)? = 0.2(=2)(0.2+0.2)(0.96 — 0.73728)* =
—0.00794

Therefore, by second order Runge-Kutta becomes
y2=y(04) =y + % {K| +k,} =0.96+ % {—0.73728 — 0.00794} = 0.58739
Fourth order Runge-Kutta method: The fourth order Runge-Kutta method:
yi =Yo+ & {ki +2ka +2k3 + ks}
where
ki = hf(x0,y0) = —2(0.2)(0)(1)> =0,
ko = hf(xo+ 2 y0+5) = —2h(x0+ 1) (vo + )% = —2(0.2)(0+0.2/2)(140/2)? = —0.04,
k3 = hf(xo+ %,yo + %2) = —2(0.2)(0.1)(0.98)% = —0.038416,
ky = hf(xo+h,yo+k3) = —2(0.2)(0.2)(0.961584)% = —0.0739715,

The fourth order Runge-Kutta method:
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y1=yo+ é {ki +2ky +2kz +ka} =1+ é[0.0 —0.08 —0.076832 —0.0739715] = 0.9615328.
Now, we have x; = 0,y; = 0.9615328.
Ky = hf(x1,y1) = —2(0.2)(0.2)(0.9615328)? = —0.0739636,
Ky = hf(x; + %,yl + %1) = —2(0.2)(0.3)(0.924551)> = —0.1025753,
Ky =hf(xi+ %,yl + %2) = —2(0.2)(0.3)(0.9102451)> = —0.0994255,
Ky = hf(x; +h,y1 +k3) = —2(0.2)(0.4)(0.86210734)? = —0.1189166,
y2 =y1+ £ {k| + 2k, + 2K+ Ky} =
0.9615328 + é[—0.0739636 —0.2051506 — 0.1988510 — 0.1189166] = 0.8620525
Absolute errors in second order Runge-Kutta method.
Atx=0.2:]0.9615385 —0.96| = 0.0015385.
Atx=0.4:1]0.8620690 — 0.86030| = 0.0017690.
Absolute errors in fourth order Runge-Kutta method.
Atx=0.2:]0.9615385 — 0.9615328| = 0.0000057.

Atx =0.4:1]0.8620690 — 0.8620525| = 0.0000165.

= Example 3.32 Given y' = x* +,y(0) = 2, compute y(0.2), y(0.4) and y(0.6) using the Runge-

Kutta method of fourth order. n

Solution: Here we have xo = 0,y0 =2,h = 0.2 and f(x,y) = x> +y
Fourth order Runge-Kutta method:

yi = Yo+ & {ki +2ky +2k3 + ku}

where
ki = hf(x0,y0) = h(xg +y0) = 0.2(0+2) = 0.4,
ko = hf(xo+ %,yo + %’) =0.2/(0.1,2.2) = (0.2)(2.201) = 0.4402,
k3 = hf(xo+ %,yo + %2) =0.2/(0.1,2.2201) = (0.2)(2.2211) = 0.44422,
ka = hf(xo+h,yo+k3) =0.2f(0.2,2.44422) = (0.2)(2.45222) = 0.490444,

The fourth order Runge-Kutta method:

1
31 =0+ g (ki + 2k + 2K+ ka} = 2+ £[0.4+2(0.4402) +2(0.44422) +0.490444] = 2.443214.

Now, we have x; = 0.2,y; = 2.443214.
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K =hf(x,y1) =0.2£(0.2,2.443214) = (0.2)(2.451214) = 0.490243,
Ky =hf(x+ 1y +5)=0.27(0.3,2.443214 4 0.245122) = (0.2)(2.715336) = 0.543067,
Ky = hf (i + 5y +%) = 0.27(0.3,2.443214 +0.271534) = (0.2)(2.741748) = 0.548350,
K, = hf(x;+h,yi +k3) = 0.2£(0.4,2.443214 4 0.548350) = (0.2)(3.055564) = 0.611113,

y2 =y(0.4) =y + £ {k| + 2k, + 2K + K} =
1
2.443214 + 5 [0.490243 + 2(0.543067) + 2(0.548350) +0.6111 13] =2.990579.

Now, we have x, = 0.4,y, = 2.990579.
K{ =hf(x2,y2) =0.2£(0.4,2.990579) = (0.2)(3.054579) = 0.610916,

K =hf(xo+ 5y +4) == 0.2£(0.5,2.990579 +0.305458) = (0.2)(3.421037) = 0.684207,
K =hf(e+ "y 4+ %) =02£(0.5,2.990579 + 0.342104) = (0.2)(3.457683) = 0.691537,
K! = hf(x2+h,ys +k3) = 0.2£(0.6,2.990579 +0.691537) = (0.2)(3.898116) = 0.779623.

3 =(0.6) = ya+ ¢ {k{ + 2K + 2K +- Kk} =
1
2990579+ £[0.610916 +2(0.684207) +2(0.691537) +0.779623] = 3.680917.

Milne’s Predictor-Corrector Formula
Milne’s Predictor-Corrector Formula: Let the first order initial value ordinary differential equa-

d
tion is d—y = f(x,y) with y(xp) = yo. Then the Milne’s Predictor Formula is defined as
X

4h
Y = vis + o i fie +2fia).

The method requires the starting values y;,v;—1,y;—> and y;_3. In particular, this method requires the
starting values yg,y1,y2 and y3. and the Milne’s corrector Formula is defined as

. h
y§+)1 =vi-it3 f(xi+1,y,@1) +4fi+fz>1] :
Here fi = f(xi,yi), fi-1 = f(xi—1,¥i-1), .-

= Example 3.33 Giveny' = x> +y,y(0) =2, the values y(0.2) =2.073,y(0.4) =2.452, and y(0.6) =
3.023 are got by Runge-Kutta method of fourth order. Find y(0.8) by Milne’s predictor-corrector
method taking A = 0.2. "

Solution: Milne’s predictor-corrector method is given by

4h
W =it 3 R S +2fi-a).

. h
y,&)l =vi-it3 f(xi+1,YE£)1) +4fi+fz>1] :
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The method requires the starting values y;,y;—1,y;—> and y;,_3. That is, we require the values
Y0,Y1,Y2,y3. Initial condition gives the value yj.
We are given that

fx,y) =x+y,x0 =0,y0 = 2,y(0.2) = y; = 2.073,y(0.4) = y, = 2.452,y(0.6) = y3 = 3.023.

Predictor application
For i = 3, we obtain

4h
yf;o) = E;p) =y0+?[2f3 — L +2A].

We have
fo= f(x0,50) = f(0,2) =2, fi = f(x1,y1) = f(0.2,2.073) = 2.081,

f2 = f(XQ,yz) = f(04,2452) = 2516,f3 = f(X3,y3) = f(06,3023) =3.239.

4(0.2
W=2+ (3) 2(3.239) —2.516+2(2.081)] = 4.1664.

Corrector application
First iteration For i = 3, we get

5 h
W= = vt 2 )+ 3]

Now, f(x4,5})) = £(0.8,4.1664) = 4.6784.
0.2
W =24504 5 [4.6784+4(3.239) +2.516] = 3.79536.

Second iteration

h
y4(12) :y2+§ [f(x4,y4(;1))+4f3 +f2] .

Now, f(x4,5}) = £(0.8,4.6784) = 4.30736.

0.2
v =24504 5 [4.30736 +4(3.239) +2.516] = 3.770624.

We have [y — y{"| = [3.770624 — 3.79536| = 0.024736.
The result is accurate to one decimal place.
Third iteration

h
yf) :y2+§ [f(x4,y4(;2))+4f3 +f2] .

Now, f(x4,5\")) = £(0.8,3.770624) = 4.282624.

0.2
wW=24504 5 [4.2826244-4(3.239) +2.516] = 3.768975.
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We have |yi”) —y'?)| = 3.768975 — 3.770624| = 0.001649.
The result is accurate to two decimal place.
Fourth iteration

h
W=y 43 [Foan) +aps+ 1)

Now, f(x4,y{)) = £(0.8,3.76897) = 4.280975.

0.2
W =24504 = [4.280975+4(3.239) +2.516] = 3.768865.

We have [y — y{)| = [3.768865 — 3.768975| = 0.000100.
The result is accurate to three decimal place. The required result can be taken as y(0.8) = 3.7689.

» Example 3.34 Using Milne’s predictor-corrector method, find y(0.4) for the initial value problem
y =x?>+y?,9(0) = 1, with 7 = 0.1. Calculate all the required initial values by Euler’s method. The
result is to be accurate to three decimal places. m

Solution: Milne’s predictor-corrector method is given by

4h
yfﬂ =yi3+ Y 2fi — fic1 +2fi—2].

c h
yl&)l =vi-it3 f(xi+1,y§ﬁ)1) +4fi+fz>1] :

The method requires the starting values y;,y;—1,y;—> and y;,_3. That is, we require the values
Y0,Y1,Y2,y3. Initial condition gives the value yj.
We are given that

flxy) =x*+y%x0 =0,y = L.
Euler’s method gives
Yir1 = yi+hf(xi,yi) = yi+0.1(x7 +7)
With xg = 0,y9 = 1, we get
yi =y +0.1(x3+y3) =1.04+0.1(0+1.0) = 1.1.
y2 =y1+0.1(x +y?) = 1.14+0.1(0.01 +1.21) = 1.222.

y3=y2+0.1(3 +y2) = 1.222+0.1[0.04 + (1.222)2] = 1.375328.

Predictor application
For i = 3, we obtain

4h
yﬁo) = yff) =Yt 2f3—fH+2f].

We have
fO :f(XanO) :f(ovl) = 1>f1 :f(xbyl) :f(()lvll) = 1227
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fo=flx2,y2) = £(0.1,1.222) = 1533284, f3 = f(x3,y3) = f(0.3,1.375328) = 1.981527.

4(0.1
W=1+ (2) 2(1.981527) — 1.533284 +2(1.22)] = 1.649303.

Corrector application
First iteration For i = 3, we get

. h
W =l =t 5 [y +ass 4 1)

Now, f(x4,5})) = £(0.4,1.649303) = 2.880200.

0.1
=122+ 5 [2:880200+4(1.981527) + 1.533284] = 1.633320.
Second iteration

h
W =y 43 [Fani)+afs+ 1)

Now, f(xs,y\") = £(0.4,1.633320) = 2.827734.
1
=122+ 07 [2.827734 +4(1.981527) + 1.533284] = 1.631571.

We have [y — y{"| = [1.631571 — 1.633320| = 0.001749.
The result is accurate to two decimal place.
Third iteration

h
yf) :y2+§ [f(x4,y4(;2))+4f3 +f2] .

Now, f(x4,5\”) = £(0.4,1.631571) = 2.822024.
0.1
=122+ = [2:8220244-4(1.981527) + 1.533284] = 1.631381.

We have |yi”) —y'?| = |1.631381 — 1.631571| = 0.00019.
The result is accurate to three decimal place. The required result can be taken as y(0.4) = 1.63138.

Adams-Bashforth Predictor-Corrector Formula

The Adams-Bashforth predictor-corrector method is given by
Predictor P: Adams-Bashforth method of fourth order.

h
W =yt g (556 =591 +37fi2 =93]

The method requires the starting values y;,y;—1,y;—2 and y;_3.
Corrector C: Adams-Moulton method of fourth order.

c h
Wi = vk 5y |9 G i) + 19 = i+ fioa

The method requires the starting values y;, yi—1,yi—2.
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= Example 3.35 Using the Adams-Bashforth predictor-corrector equations, evaluate y(1.4), if y
satisfies % +§ = xlz and y(1) =1,y(1.1) = 0.996,y(1.2) = 0.986,y(1.3) = 0.972. "
Solution: Adams-Bashforth method of fourth order.
W= ik 35~ 59h 1 +37fi-2 9 3],

The method requires the starting values y;,y;—1,y;—2 and y;_3.
Corrector C: Adams-Moulton method of fourth order.

h
Y =i 5z |9 i i) +19fi = 5fict + fia)

The method requires the starting values y;, yi_1,yi—2.

1

We have f(x,y) = = — X, with 2 = 0.1, we are given the values y(1) = 1,y(1.1) =0.996,y(1.2) =
X2 x

0.986,y(1.3) = 0.972.

Predictor application
For i = 3, we obtain

h
W =yst 55 (550 = 590+ 37f1 9.
We have
fo= f(x0,y0) = f(1,1) =1—-1=0, fi = f(x1,y1) = f(1.1,0.996) = —0.079008,
fo=f(x2,y2) = £(1.2,0.986) = —0.127222, f3 = f(x3,y3) = f(1.3,0.972) = —0.155976.
0.1
3y =3 = 0.972+ Z[55(~0.155976) — 59(~0.127222) + 37(~0.079008) - 9(0)] =
0.955351.

Corrector application
First iteration For i = 3, we get

. h
Y=y =y 4 2 [9f(x4,y§°)) +19f3=5f +f1} :

Now, f(xs,y\)) = £(1.4,0.955351) = —0.172189.

0.1
W =0972+ 5 [9(=0.172189) + 19(~0.155976) — 5(~0.127222) + (~0.079008)] =
0.955516.

Second iteration
h
Pt st 9545
Now, f(xs,y\") = £(1.4,0.955516) = —0.172307.

1
y=09724 2—4 [9(—0.172307) + 19(—0.155976) — 5(—0.127222) + (—0.079008)] =
0.955512.
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Now, we have [y\” —y{"| = 10.955512 — 0.955516| = 0.000004.
Therefore, y(1.4) = 0.955512. The result is correct to five decimal places.



4.1

€ 4. Power Series

What is a power series?

Many functions can be represented efficiently by means of infinite series. Examples we have seen in
calculus include the exponential function

3!

1 1 |
& :1+x+—x Fo =Y = 4.1
3! = n!
and the trigonometric functions,
1 1 & 2k
cosx=1— Ex + > Z
and 4 1 -
sinx =x— —x° +a Z 7x2k+1.

(2k+1)!

An infinite series of this type is called a power series. To be precise, a power series about x is an
infinite sum of the form

ap+ai(x—xo) +ar(x —x0)> +--- = Y an(x—xo)",

where the a,,’s are constants.
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