Bihar Engineering University, Patna End Semester Examination - 2022

Course: B. Tech. Code: 102701 Semester: VII
Subject: INTERNAL COMBUSTION ENGINES

Time: 03 Hours
Full Marks: 70

Instructions:-

(e)

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory

Q.1 Choose the correct answer (any seven) of the following:

 $[2 \times 7 = 14]$

- (a) The compression ratio of an internal combustion engine is defined as the ratio of
 - I. Displacement volume to clearance volume
 - II. Minimum to maximum cylinder volume
 - III. Maximum to minimum cylinder volume
 - IV. Clearance volume to displacement volume
- (b) Considering the same compression ratio and same conditions of air at the start of compression, the peak pressure generated in the cycle will be maximum for
 - (i) Otto cycle (ii) Diesel cycle (iii) Dual cycle (iv) cannot be determined
- (c) Volumetric efficiency is the measure of
 - I. power of the engine
 - II. speed of the engine
 - III. breathing capacity of the engine
 - IV. pressure rise in the cylinder
- (d) A simple carburettor supplies rich mixture during
 - I. (i) starting (ii) idling (iii) cruising
 - The method of determination of indicated power of multi-cylinder SI-engine is by the use of
 - (i) Morse test (ii) Prony brake test
- (iii) Motorint test (iv) Heat balance test

(iv) accelerating

- (f) An engine produces 10 kW brake power while working with a brake thermal efficiency of 30%. If the calorific value of the fuel used is 40000 kJ/kg, then what is the fuel consumption?
 - I. 1.5 kg/hour
 - II. 3.0 kg/hour
 - III. 0.3 kg/hour
 - IV. 1.0 kg/hour
- (g) Knocking tendency in a SI engine reduces with increases.
 - I. Compression ratio
 - II. Wall temperature
 - III. supercharging
 - IV. engine speed
- (h) Where does mixing of fuel and air lake place in case of diesel engine?
 - I. Injection pump
 - II. injector
 - III. engine cylinder
 - IV. inlet manifold
- (i) A good CI engine fuel should have
 - I. high octane number
 - II. very high cetane number
 - III. a short ignition lag
 - IV. none of the above
- (j) The factors which must be considered before deciding the optimum firing order of an engine are
 - I. engine vibration
 - II. engine vibration and engine cooling

		III. engine vibration and development of back pressureIV. engine vibration, engine cooling and development of back pressure	*
9.2	(a) (b)	Derive an expression for air standard efficiency of otto cycle with P-V and T-S diagram. What is abnormal combustion?	[7]
93	(a)	Compare the Otto, diesel and diesel cycle for the i. same compression ratio and heat input.	[7]
	(b)	ii. same maximum pressure and heat input. An air-standard dual cycle has pressure and temperature at the beginning of compression a and 35°C, respectively. The compression ratio is 11, the pressure ration during heat additional cut-off ratio 1.7. Calculate the	ion 1.0
		i. percentage clearance;	[7]
		ii. pressure and temperature at the salient points of the cycle;	,
Q. 4	at 1	IC engine working on air standard Dual cycle has compression ratio 15, and the compression bar, 300 K. The maximum pressure is limited to 60 bar. The heat transferred to air at comme is twice that at constant pressure. Determine: the pressure and temperature at the cardinal points of the cycle.	beginstan [14]
	(b)	the cycle efficiency, and	
	(c)	the mean effective pressure of the cycle.	
Q.5	(a)	Explain the effect of engine, speed and load on maximum brake torque (MBT) spark timing engine.	g of SI
	(b)	A simple jet carburettor is required to supply 5 kg of air and 0.5 kg of fuel per minute. The specific gravity is 0.75.	ne fue!
0.6	(a)	What are supercharging and turbo charging? Describe in brief the methods of turbo charging	
	(b)	An eight-cylinder, four-stroke engine of 9 cm bore and 8 cm stroke with a compression rati is tested at 4500 r.p.m. on a dynamometer which has 54 cm, arm. During a 10-minute te dynamometer scale beam reading was 42 kg and the engine consumed 4.4 kg of gasoline has Calorific value of 44000 kJ/kg. Air at 27°C and 1 bar was supplied to the carburettor at the r 6 kg/min. Find the — i. brake power delivered. ii. brake mean effective pressure. iii. brake specific fuel consumption. iv. brake thermal efficiency. v. volumetric efficiency. vi. air-fuel ratio.	o of 7
Q.7	(a)	Briefly discuss the air-fuel ratio requirements of a petrol engine from no load to full condition. Describe the essential parts of a modern carburettor.	[7]
	(b)	How are injection systems classified? Describe them briefly. Why is the air injection system used nowadays?	m not [7]
00	(0)	Shotal dia and distribution of the state of	
2.0	(a) (b)	Sketch the constructional layout of a battery ignition system and explain its working. Explain and compare the wet sump and dry sump lubrication systems.	[7] [7]
Q.9		Write short notes on any four of the following: I. Adiabatic flame temperature II. Multipoint port fuel injection system III. Working principle of jet propulsion IV. combustion chamber design of CI engine V. Types of cooling system	[14]