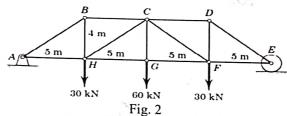

Bihar Engineering University, Patna B.Tech. 5th Semester Examination, 2023


Course: B. Tech. Time: 03 Hours Code: 101506

Couc	e. 10150	Subject	: Mechanics of Materials	Full Marks: 70	
(i) (ii)	There of	s:- arks are indicated in the right-l are NINE questions in this pap t FIVE questions in all.	and margin. er.		
(iv)	Questic	on No. 1 is compulsory.			
Q.1	Choose the correct answer of the following (Any seven question only): $[2 \times 7 = 14]$				
_		(a) When shear force at a point is zero, then bending moment at that point will be			
		(i) zero (ii) Maxim		(iv) infinity	
	(b)	(b) The maximum slope of a cantilever carrying a point load at its free end is at the			
	(-)	(i) Free end	(ii) Fixed end	ree end is at the	
		(iii) Centre of span	(iv) Half-length distance fro	m froe and	
	(c)	-			
	(c) The total area under the stress-strain curve of a mild steel specimen tested to failure under tension is a measure of its:			lien tested to failure	
		(i) Breaking strength	(ii) Toughness		
		(iii) Hardness	(iv) Stiffness		
	(d)		m is reduced the bending stress wil	1	
	. ,	(i) decrease (ii) increa		(iv) infinite	
	(e) Tensile test was performed on a round bar, after fracture it was found that the				
		remains approximately same at fracture. The material under test was			
		(i) Mild steel (ii) Cast i	3 /	(iv) Aluminium	
	(f)	The tangential force per unit		(IV) Manimum	
		(i) Shear strain (ii) Shear stress (iii) Modulus of rigidity (iv) Torsion			
	(g)	A material in which rupture takes place with little or no plastic deformation is said to be			
	(8)	(i) Ductile material (ii) Elastic material			
		(iii) Plastic material	(iv) Brittle material		
	(h)	Tangential stress in a cylinder is given by [symbols have their usual meanings].			
		(i) PD/2t (ii) 2PD/t	_	(iv) 4PD/t	
	(i)	Torsional sectional modulus is also known as			
		(i) Polar Modulus	(ii) Sectional Modulus		
		(iii) Torsion Modulus	(iv) Torsional Rigidity		
	(j)				
		(i) Moment of Inertia	(ii) Effective Length		
		(iii) Core	(iv) Safe loading		
	V 1		(1)		
02	(a)	Differentiate between:			
2.2	(4)	(i) Statically determinate and statically indeterminate structures			
	(ii) Bending stress and shear stress of beam			S	
	(b)				
	. ,	Determine the reactions, and draw the shear force and bending moment diagram for the beam loaded as shown in the Fig. 1			
			coort		

Page 1 of 2

- 0.3 An I-section has a depth of 200 mm, flange width of 120 mm, flange thickness of 15 [14] mm and web thickness of 10 mm. Determine the percentage of the BM and SF are carried by the flange and web individually. Q.4 A rectangular block of material is subjected to a tensile stress of 110 N/mm² on (a) [7] one plane and a tensile stress of 47 N/mm² on the plane right angle to the former.
- Each of the above stresses is accompanied by a shear stress of 63 N/mm² and that associated with the former tensile stress tends to rotate the block anticlockwise. Find:
 - (i) the direction and magnitude of the principal stress and
 - (ii) the magnitude of the greatest shear stress.
 - At a certain point in a strained material, the intensity of stresses on two planes at [7] right angle to each other are 20 N/mm² and 10 N/mm² both tensile. They are accompanied by shear stress of magnitude 10 N/mm². Find graphically or otherwise the location of principal planes and evaluate the principal stresses.
- Q.5 (a) State the assumption of theory of pure bending and derive the expression for [8] bending stress in case of simple bending.
 - Determine the member forces in AB, CH, BH and CG for the truss shown in (b) [6] Fig. 2

- A rectangular column of wood 3 m long carries aload of 300 kN. Determine whether or Q.6 not section of size 200 mm X 150 mm will be able to carry this load if the factor of [14] safety 3 is to be used, assume Euler's formula is applicable E= 12.5 GPa and the permissible stress is 12 MPa. If this section will not be able to carry this load, design a square section to do so.
- A solid steel shaft 5 m long is stressed at 80 MPa when twisted through 4°. Using 0.7 (a) G = 83 GPa, compute the shaft diameter. What power can be transmitted by the [7] shaft at 20 Hz?
 - A cylindrical steel pressure vessel 400 mm in diameter with a wall thickness of 20 (b) mm, is subjected to an internal pressure of 4.5 MN/m². (a) Calculate the [7] tangential and longitudinal stresses in the steel. (b) To what value may the internal pressure be increased if the stress in the steel is limited to 120 MN/m². (c) If the internal pressure were increased until the vessel burst, sketch the type of fracture that would occur.
- 0.8 Write the assumption made in Euler's Formula for column and its limitation. (a) [7] Derive Multi-axial stress-strain relationships among shear stresses and strains [7]

 $[3\frac{1}{2} \times 4 = 14]$

- strains for linear isotropic elastic materials. Write short notes on any four of the following: 0.9
- (a) Castigliano's theorem (b) Maxwell Bettie's reciprocal theorem (c) Failure theories (d) Stability of dams (e) Yield design (f) Stress and strain tensor